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Abstract -- The ineffectiveness of the wall-following robot (WFR) performance indicated by its surging 
movement has been a concerning issue. The use of a Fuzzy Logic Controller (FLC) has been 
considered to be an option to mitigate this problem. However, the determination of the membership 
function of the input value precisely adds to this problem. For this reason, a particular manner is 
recommended to improve the performance of FLC. This paper describes an optimization method, 
Particle Swarm Optimization (PSO), used to automatically determinate and arrange the FLC ’s input 
membership function. The proposed method is simulated and validated by using MATLAB. The results 
are compared in terms of accumulative error. According to all the comparative results, the stability and 
effectiveness of the proposed method have been significantly satisfied. 
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INTRODUCTION 

The main task of WFR is to maintain the 
distance into the setpoint position safely, 
commonly-termed as the expected track, when it 
moves [1, 2, 3, 4, 5, 6]. It is expected to have the 
ability to make decisions in the form of movements 
that match the contours of the ever-changing 
walls. Therefore, it can be declared that the main 
objective of solving and improving this kind of 
robot is to involve the proper controller. There are 
many existing controllers used to keeping the 
movement of WRF on the expected track, which 
utilizes the error as the input. The input is then 
used to decide the required amount of Pulse Width 
Modulation (PWM) for both the powered wheels. 
The use of Proportional-Integral-Derivative (PID) 
and Fuzzy Logic Controller (FLC) [7, 8, 9, 10] can 
be suggested and recommended as the closed-
loop controller [11] suitable for processing the 
input and giving the feedback to the further 
decision process.   

Different from the principle of the PID 
controller [8], which utilizes the mathematical 
calculation, FLC is the type of controller adopting 
the human thinking and perception [8, 12, 13, 14, 
15, 16, 17, 18]. The working principle of FLC can 
be indicated by the existence of a linguistic term 
generated from the logical foundation in a different 
term. This linguistic term is then represented in the 

form of Membership Function [10][13]. Both the 
input and output have the membership function 
connected by the analogy designed by the user. It 
is called the Rule-Base [12, 17, 18, 19]. It tells that 
the input is proportional to the output respecting 
the designer’s perception.  

The success of using FLC lies in how well 
the arrangement of MBF is prepared before the 
system is processed. Traditionally in the case of 
controlling WFR, it can be arranged manually by 
estimating both the big the PWM of each wheel 
when the error is randomly change. Initially, the 
change of error can be predicted at the beginning. 
But the properness of the PWM value for each 
wheel is not that easy to be chosen. Therefore, 
such manual tuning has been left till nowadays. As 
the alternative to overcome this lack, there are 
many special-strategies which adopted from the 
heuristic-based optimization.  

The earliest strategy is a Genetic Algorithm 
(GA) [20, 21, 22, 23], which utilizes the creation of 
mutation and crossover in finding the best 
optimum solution [24]. However, the complexity of 
using GA has been mentioned.  

Besides that, the speed of finding the best 
solution is too slow, indicated by many 
generations required to find the answer. As the 
effort of replacing GA, in this paper, the role of 
Particle Swarm Optimization (PSO) [7, 13, 24] is 
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approached to enhance the FLC by automatically 
arranging the membership function of the input 
respecting to the output. It is a relatively new 
optimization method that can be used similarly as 
GA in finding the optimal solution.  

Initially, the kinematic configuration of the 
real WFR is designed. It is used as the base of 
movement by ignoring the physic law [11], such as 
the mass, slippage, and force, or even human 
interference. It is intended to ease the designer to 
investigate the movement by only referring to the 
steering system of WRF. In this case, the real 
WRF is similarly designed as the wheelchair [18] 
[25], which contains two powered wheels and a 
freewheel. The steering principle can be 
concerned with the diversity of the speed of the 
powered wheel mounted on the backside since 
the freewheel gives no effect to the movement. 
Relating to the used controller, FLC, the starting 
needs from this analogy is the output, which can 
be represented by the value of PWM in the form of 
the membership function. 

Moreover, in order to make a robot to be 
autonomous, the WRF is equipped with three 
distance sensor HC-SR04. They are mounted on 
the left, right, and front side-body, which are 
further used to detect any obstacle or wall on the 
left, right, and the front side of the robot body, 
respectively. When it is closed to the front wall and 
referred to the front sensor, the robot turns right 
with 90o translational movement when the robot 
senses there is the wall on the left side. Contrary, 
WFR turns left with a 90o translational movement 
when the front sensor senses the obstacle, and 
the previously detected wall is on the right side. 
Meanwhile, the data transferred from the left and 
right sensors is directly processed by FLC. It is 
firstly converted as the values of error and 
classifying as the input membership function. 
Simply, the input membership function is adopted 
from the left or right sensor, and the output 
membership function is the PWM prepared for 
both the powered wheels.  As noted, the 
optimization is only intended to arrange the input 
membership function instead of both the input and 
output.  

Once the completeness mentioned above is 
prepared, the performance of WRF is simulated 
based on the proposed method, Fuzzy Logic 
Controller, enhanced by Particle Swarm 
Optimization. Henceforth, it is termed as FLC-
PSO. In order to evaluate the effectiveness, 
stability, and robustness, it is compared with the 
performance of the WRF. Since there are two 
types of errors, which are positive and negative, 
the negative errors are converted to be positive. It 
is then used to add the recorded positive error.  
 

Thus, those different performances are 
compared in the term of accumulative error or the 
total positive error for the whole robot movement. 
The fastest performance of WRF can be 
determined based on the achieved goal position in 
the same duration. Meanwhile, the stability can be 
directly seen from the graphical representation. 
Moreover, by observing the speed of PSO in 
finding the best solution, the robustness of the 
proposed method can be observed. Finally, based 
on all the comparative results, the proposed 
method has been effectively and significantly 
improving the performance of WFR.   

The rest of this paper is organized as 
follows; Materials and Methods are described in 
Section 2, Experimental results are described and 
discussed in Section 3, and Conclusions are 
presented in section 4. 
 
METHOD 

The WFR is the robot assigned to follow the 
wall by utilizing the distance sensor mounted on 
the body of the robot. In order to improve the 
performance of WFR, the closed-loop controller, 
FLC is used. Essentially, FLC processes the input 
membership function and makes decision with 
respect to the proper output based on the rule-
based system [3, 4, 15, 16, 17, 19, 26, 27]. There 
have been many products applying the principle of 
FLC, such as in the case of adjusting the air 
conditioner based on the actual temperature, 
pressing the pedal of an automatic car based on 
the crowds around, and adjusting the heat based 
on the food maturity placed on the barbeque 
cooker. As the helper for making the decision, FLC 
is essential can be done by manually arranging the 
input membership function. However, it is no 
longer proper for the application with the random 
change of the input, such as WFR. For this reason, 
the use of PSO is approached in this project. By 
using PSO, the arrangement of the input 
membership function can be offline-determined 
[24, 28, 29]. Therefore, as an effort to optimize the 
FLC, the simulation is required. For simulation, the 
movement principle should be involved based on 
the robot platform (see Figure 2). The principle of 
movement can be easily depicted and then used 
as the base by only attracting it as the kinematic 
configuration shown in Figure 1.  

The kinematic configuration shown by 
Figure 1 is adopted from the wheeled mobile robot 
consist of two layers of the body, and the main 
controller named as Arduino Mega  [29, 30, 31,32]. 
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Figure 1. Kinematic Configuration 

 
It has three wheels, which is an unpowered 

wheel and two powered wheels completed with 
the rotary encoder, three distance sensors placed 
on a specific side, as clearly mentioned before. It 
is also completed with a fan connected to the DC 
motor. This WFR is actually used for the 
implementation purpose of the fire-fighting robot 
[29] [30]. The appearance of this robot is shown in 
Figure 2. 

 

 
Figure 2. Wheeled Mobile Robot 

 
As a common way for quickly observing the 

movement based on the kinematic configuration 
shown in Figure 1, the law of differential steering 
system is approached in this project. First, 
considering that the robot is placed in a flat 
environment, there will be two different positions, 
which are the spatial and orientation pose [2] [11]. 
The spatial pose (𝑥, 𝑦) represents the position of 
the robot with respect to x and 𝑦 coordinate when 
the model is modelled 2D. Meanwhile the 
orientation θ represents the angle formed by the 

robot heading to 𝑥 coordinate of the global frame. 
Simply, the orientation pose is commonly-called 
as the heading. Up to this point, the current pose 

𝑝(𝑡)  of the wall-following robot can be 

mathematically expressed as follows 

𝑝(𝑡) = [𝑥(𝑡) 𝑦(𝑡) 𝜃(𝑡)]𝑇 (1) 

Then by considering, there are two types of 

velocity named linear 𝑣  and angular velocity 𝜔 

affecting the movement. The transition movement 
of the robot can be calculated as in Equation (2). 

�́� = [

�́�
�́�

�́�

] = [

𝑐𝑜𝑠𝜃(𝑡) 0

𝑠𝑖𝑛𝜃(𝑡) 0

0 1

] [
𝑣
𝜔

] (2) 

Next by applying the transition movement 

(2) to the current pose 𝑝(𝑡), the future pose 𝑝(𝑡+1) 

is then calculated as 

𝑝(𝑡+1) = 𝑝(𝑡) + �́� (3) 

Note that the robot only needs the linear 
and angular velocity in order to update the pose of 
the robot respect to the time scale 𝑡. Therefore, 
since the command sent to the motor driver is in 
the form of value PWM, the angular velocity 
should be firstly concerned. In this project, all the 
values of PWM are converted into the angular 
velocity of the right wheel 𝜔𝑟 and left wheel 𝜔𝑙. It 
is done by recording the rotation of each wheel 
caused by specific values through the rotary 
encoder. Then, by referring to the angular velocity 
of all the independently driven wheel, the right 

wheel 𝜔𝑟  and left wheel 𝜔𝑙 , the complete 

Equation for a differential steering [6, 33, 34] 
system can be sequentially summarized as 
follows 

𝑣 =
(𝜔𝑟 + 𝜔𝑙)𝑅

2
 (4) 

𝜔 =
(𝜔𝑟 − 𝜔𝑙)𝑅

2𝐿
 (5) 

𝜔𝑟 =
𝑣 + 𝜔𝐿

𝑅
 (6) 

𝜔𝑙 =
𝑣 − 𝜔𝐿

𝑅
 (7) 

Where 𝑅 and 𝐿 are the radius of the driven 

wheel and half of the length of the robot body, 
respectively.   

The kinematic configuration shown by 
Figure 1, it is the initial configuration when the 
wheeled mobile robot is placed on the free-
obstacle environment. Therefore, in order to start 
the simulation, the representation should firstly be 
redesigned. Since there is no change of the cause 
of the movement, then the graphical 
representation of the kinematic configuration of 
WFR can be depicted in Figure 3. It is noted that, 
since the movement is adopted from the linear and 
angular velocity generated from the PWM for each 
DC motor, the Equation (1)-(7) can still be used.  

However, to start the simulation, a model of 
the mobile robot shown in Figure 1 should be 
remodeled. Therefore, by referring to the 
differential steering system, the model of WFR 

with 𝑅 = 3.5𝑐𝑚  and 𝐿 = 10𝑐𝑚  as depicted in 

Figure 3. 
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Figure 3. Model of The Wall-Following Robot 

 
According to the principle of WFR, the error 

would be considered equal to zero while the robot 
successfully moves on the predetermined path. 
The robot moves closer to this expected path 
when it is far from the wall by turning left or right, 
depending on the location of the wall. The 
common issue of the WFR movement is wave-
movement due to the improper speed of each 
wheel when it is turned. 

Consequentially, the error would always 
change because of the turn actions. Therefore, as 
an effort to present the threshold for analyzing the 
performance of WFR, the error is accumulated. It 
is done by quadrating all the types of error which 
can be calculated as follows 

𝑡𝑒 = ∑ 𝑒(𝑖𝑡)2

𝑚𝑎𝑥

𝑖𝑡=0

 (8) 

where 𝑡𝑒 refers to the total of the error and 𝑒(𝑖𝑡) is 

the current error calculated based on the 
difference between the value of the predetermined 

𝑑𝑑 and actual distance 𝑎𝑑. Simply, the error can 

be mathematically expressed as 

𝑒(𝑡 + 1) = 𝑑𝑑 − 𝑎𝑑(𝑡) (9) 

Up to this point, it is clear that there are two 
contradictive values of the error under time 
integration. 

 
The Wall-Following Robot Controlled by FLC 
Optimized by PSO 

Although the wall is flat, the turn action of 
the robot makes the data received by the sensor 
will always random. Since the speed is adjusted 
based on these data, it is hard to know the 
effective values for each wheel. Therefore, the 
role of FLC is adopted in this project. By using 
FLC, it can be adjusted automatically even when 
the change of the input is rapidly changed. FLC is 
inspired by human experts [7, 8, 14, 35] who make 
decisions by involving the step of the fuzzification, 
the rule base, and defuzzification, as described in 
Figure 4. 

 
Figure 4. Flowchart of FLC for WFR 

 
It is clear that based on the kinematic 

configuration in Figure 1 with known R and L, then 
two input variables on mobile robot movement are 

linear 𝑣 and angular velocity ω. The adjustment of 

the linear and angular velocities affects the 
movement of the robot when tracing the wall. And 
in this project, the angular velocity ω is given 
manually based on the expected orientation. 
Meanwhile, the linear velocity v is adjusted by 
referring to the output value of the FLC. 
Furthermore, since the input of distance is used as 
core-base in the FLC process, the FLC only 
produces the linear velocity v.  

In this experiment, the input distance is 
obtained from an HCSR04 mounted on the left 
side of the robot body. The readable distance 
value of the sensor is initially converted directly to 
the error value by using Equation (9). Then this 
error value would be processed on membership 
classification as input. To do so, it is assuming that 
the sensor reads the value on the ranges of  3𝑐𝑚 

up to 23𝑐𝑚 and if every 1𝑐𝑚 represents the error 

value respecting to the predetermined ideal 
distance4. Then it is clear to classify possible error 
as the input membership function as shown in 
Figure 5. It is noted that the ideal distance is set 
as 13𝑐𝑚. 

 Regarding Figure 5, the grouping step is 
done by only giving label on every subset range, 
i.e., the error value -1 to 0 represents “close” robot 
distance, -0.5 to 0.5 representing “medium” and 0 
to 1 representing the robot distance when “far” 
from the wall. 

Once arranging the input membership 
function is completed, the output setting can be 
sufficiently done in this fuzzification step. This 
stage is a semi-free stage to estimate the range 
speed of the robot. The robot has the lowest speed 

of 0 𝑑𝑚 𝑠⁄  and the fastest speed of 0.3 𝑑𝑚 𝑠⁄ . 
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Figure 5. Input Membership Function 
 
Respectively, all the arrangement shown in 

Figure 5 is proportional to the arrangement 
depicted in Figure 6. 

 

 
Figure 6. Output Membership Function 

 
According to Figure 6, it is obvious that all the 
linguistic terms of slow, medium, and fast refer to 
close, medium, and far, respectively.  

Once the fuzzification step is done, the 
values of input and output membership function 
are then correspondingly connected by referring to 
the form of if-then of Fuzzy Logic Controller. It 
refers to the Mamdani version, which is used as 
the base to design the rule base connection. It is 
adapted from the analogy that the robot quickly 
moves away from the wall when it is near the wall, 
moves forward with the normal speed when it is on 
the ideal path, and moving closer to the wall with 
the lower speed to the wall. Therefore, after 
applying all the described steps above, the FLC 
system leads to the defuzzification process. In this 
project, the centroid defuzzification [10, 36, 37] is 
used, in which its general Equation is known as 
follows 

𝑧0 =
∫ 𝜇𝑖(𝑥)𝑥𝑑𝑥

∫ 𝜇𝑖 (𝑥)𝑑𝑥
 (10) 

where 𝑧0  is the defuzzified output, 𝜇𝑖  is a 

membership function, and 𝑥 is the output variable. 

By using FLC, the proper speed based on 
the distance of the robot to the wall is efficiently 
and effectively obtained. Finally, the performance 
is significantly improved as there is no much 
wobble on its movement (see Figure 12).  

However, it is done by only manually 
arranging the input membership function. Thus, 
the enhancement can still be conducted. It is done 
by using the PSO as the manner to optimize the 
FLC.  

PSO is inspired by the social foraging 
behavior of some animals, such as the flocking 
behavior of birds and the schooling behavior of 
fish [7, 13, 24]. The correlation between PSO and 
FLC is depicted in Figure 7. As can be seen in 
Figure 7, the PSO is connected to the system for 
gaining the proper value for all of the subsets on 
the input membership function. It leads to an 
automatic arrangement. 

 

 
Figure 7. The Flowchart of PSO and FLC in 

Controlling the Wall-Following Robot  
 

 In this experiment, the values in each 
subset of the input membership function are 
represented by the particles. These particles are 
assumed to consist of randomly generated 
positions and velocities by promoting the limits of 
the range. The condition is an early stage in the 
use of PSO [4, 7, 13]. Then evaluate the process 

for the determination of 𝑃𝐵𝑒𝑠𝑡 and 𝐺𝐵𝑒𝑠𝑡 using 

the fitness function. It is clear that the fitness 
function is the total error 𝑡𝑒, which represents the 
performance of WFR. 

Meanwhile, 𝑃𝐵𝑒𝑠𝑡  and 𝐺𝑏𝑒𝑠𝑡  stands for 

Best Position and Global Best, which represent 
the best particle value and the best fitness, 
respectively. After this process, these two 
variables are stored to represent the best solution 
in every generation. The generation or the number 
of repetitions in the searching process is 
predetermined with a value of 200 repetitions. 
Once the best solution for each generation is 
achieved, it is then used as the reference for the 
next step. Contrary, the system restarts from the 
beginning until the better solution completed. By 
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doing so, the representative solutions are 
improved generation-by-generation. The solution 
in the last generation provides the best solution 
indicated by the presence of the lowest fitness 
value. Since the position of each particle 
representing the affecter to the fitness function, 
the PSO finds the optimum solution by applying 
the velocity to the certain particle given the 
previous position of particles. It is mathematically 
calculated by using the general Equation of PSO, 
as shown in Equation (11) and (12).  

𝑣𝑗+1
𝑖 = 𝑤𝑣𝑗 + 𝑐1𝑟1(𝑝𝑏𝑒𝑠𝑡𝑖 − 𝑥𝑗

𝑖)

+ 𝑐2𝑟2(𝑔𝑏𝑒𝑠𝑡𝑗 − 𝑥𝑗
𝑖) 

(11) 

𝑥𝑗+1
𝑖 = 𝑥𝑗

𝑖 + 𝑣𝑗+1
𝑖  (12) 

where 𝑣𝑗
𝑖  is the velocity of 𝑖 th particle at the 𝑗 th 

iteration, 𝑥𝑗
𝑖 is the current solution of 𝑖th particle at 

the 𝑗 th iteration. 𝑟1  and 𝑟2  represent the random 

number uniformly generated, satisfying the range 

of 0 ~ 1 . Meanwhile, 𝑐1  and 𝑐2  value is self-

confidence (cognitive) factor and swarm-
confidence (social) factor, respectively. 𝑤  is 
inertia factor that takes linearly decreasing values 
downward from 1 to 0 according to the predefined 
number of iterations as recommended by Haupt, 
2004 [13, 24, 29]. Figure 8 is presented to ease 
the description of this analogy. It shows the 
complete process of PSO used in this experiment. 

 

 
Figure 8. PSO’s Flowchart 

 
As the closing part of Section 3, the best 

result of WFR controlled by FLC-PSO has the total 
error, as shown in Figure 9. This figure shows that 
the changes in all the fitness values in each 

generation within the looping process or 𝑚𝑎𝑥𝑖𝑡up 

to 200 times. Finally, the last gained solution is 
considered, and its affecter is used to arrange the 
input membership function of FLC (see Figure 11). 

 
Figure 9. The Change of The Fitness Function 

 
As discussed earlier that each generation 

consists of the solution for subset in the input 
membership function, which are represented by 

𝑀𝐵𝐹1, 𝑀𝐵𝐹2 and 𝑀𝐵𝐹3 for “close,” “medium,” 

and “far” (see Figure 10). Figure 10 represents the 
normal arrangement of the input membership 
function without any optimization manner. 
Therefore, by connecting the relationship of Figure 
10 and the affecter at the last generation shown 
by Figure 9, the arrangement of the input 
membership function of FLC optimized by PSO 

are respectively expressed by  𝑀𝐵𝐹1 =
−0.49643 , 𝑀𝐵𝐹2 = −0.472  and 𝑀𝐵𝐹3 =
0.39386  with the fitness value is equal to 

0.63791. 

 

 
Figure 10. The Optimization Target of The Wall-

Following Robot Controlled by FLC 
 
RESULT AND DISCUSSION 

By performing the several stages discussed 
in Section 3, the arrangement of the input 
membership function becomes, as shown in 
Figure 11.  
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Figure 11. Optimized-Input Membership Function 

 
Figure 11 explains that the input 

membership function of the manual settings 
shown in Figure 5 has been changed. Each 
parameter changes automatically. Next, to 
observe the striking difference between the 
proposed and the common method, this paper 
presents two results of WFR simulation that are 
controlled by using manual settings of FLC and 
FLC optimized by PSO. Graphically, they are 
respectively depicted in Figure 12 and Figure 13.  
These figures represent the WFR performance 
simulated by placing the robot beside the wall on 
the left side at the starting point. The wall is 

assumed flat length up to 2.5𝑚 which is a bend 

and back straight along 3.5𝑚 and a curve back 

straight along 2.5𝑚 are available 

 

 
Figure 12. The Performance of WFR Controlled 

by FLC 
 

Figure 12 shows the performance of WFR 
controlled by FLC with the normal adjustment to 
the input membership function. Initially, the robot 

is placed on the coordinate 𝑥 = 8.4, 𝑦 =
1, 𝑎𝑛𝑑 𝜃 = 𝜋 4⁄  referring to the kinematic 

configuration on the 2D Cartesian. Additionally, 
the robot performs the 50 times moving step, and 

the latest position is shown on 0.146069943𝑚 

far away from the starting point. 
The graphical results shown in Figure 12 

and Figure 13 are used as the base to validate the 
stability and effectiveness of the proposed 
method. 

 

 
Figure 13. The Performance of WFR Controlled 

by FLC-PSO 
 

Figure 13 depicts the performance of the 
WFR controlled by FLC-PSO. The simulation is 
also begun by placing the WFR on the same 
starting point with 50 times of moving step. BY 
comparing both performances (Figure 12 and 
Figure 13), the normal arrangement of the input 
membership function is able to make the WFR 
faster than the proposed method. However, it 
gives much wobble of the movement. It does not 
overcome the main objective of WFR, which is 
reducing the wave motion. Contrary, the WFR 
controlled by FLC-PSO (in Figure 13) shows the 
stable movement with no much wobble when it is 
following the wall.  Therefore, it can be stated that 
the proposed method is better than the traditional 
method in terms of stability.  

The speed is not concerned as the 
parameter of consideration. The reason is, the 
dynamic movement of the WFR significantly 
depends on the flatness of the wall.  In this 
experiment is assumed that the wall is flat.  
Therefore, when the robot faces the wave wall, the 
WFR with the fast movement will diverge to the 
expected performance. Thus, the validation 
method is only referring to the smaller error of 
different performances of the WFR. For this 
reason, Table 1 is presented in this paper to show 
the detailed comparison of the error in 𝑐𝑚.  
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Table 1. The Error and Latest Position of The Performance of The Wall-Following  

Robot Controlled by FLC 
The WFR Performance Controlled 

by FLC-Normal Setting 
The WFR Performance Controlled 

by FLC-PSO 

Step 
Error  
(cm) 

Latest Pose 
(m) 

Step 
Error  
(cm) 

Latest Pose 
(m) 

1 -4 0.14606994 1 -4 0.09642614 
2 -5.460699 0.24302586 2 -4.964261 0.19332111 
3 -3.521581 0.31270675 3 -3.026362 0.2397104 
4 -1.619049 0.40417552 4 -1.874919 0.30283099 
5 -0.008476 0.52101942 5 -0.91979 0.38205463 
6 0.9374044 0.64588188 6 -0.177101 0.47718661 
7 0.9426959 0.75885652 7 0.2604066 0.57936926 
8 0.4131813 0.88227195 8 0.3508898 0.68067759 
9 -0.168535 1.03521386 9 0.218983 0.78190867 

10 -0.484499 1.20005622 10 0.0413782 0.88494252 
11 -0.34559 1.35718728 11 -0.071435 0.98912305 
12 0.0350587 1.50366153 12 -0.092989 1.0933626 
13 0.288159 1.64364406 13 -0.055757 1.19737808 
14 0.2636209 1.7829708 14 -0.007396 1.30122824 
15 0.0628797 1.92929998 15 0.0215563 1.40497498 
16 -0.129997 2.08407392 16 0.0253927 1.50869747 
17 -0.178658 2.24024872 17 0.0142133 1.61247282 
18 -0.077147 2.39257731 18 0.0010377 1.71631902 
19 0.0589272 2.54021022 19 -0.006342 1.8202043 
20 -1.884126 2.72837616 20 -0.006881 1.92409175 
21 -1.939566 2.86583752 21 -0.003587 2.02796281 
22 -0.644594 2.98733481 22 -1.3E-05 2.13181665 
23 0.5336664 3.11425983 23 0.0018495 2.23566146 
24 0.9427419 3.23480951 24 0.0018563 2.33950619 
25 0.6210753 3.35355836 25 0.000896 2.44335566 
26 0.0613277 3.49456861 26 -6.79E-05 2.54720993 
27 -0.376562 3.65704211 27 -2.000533 2.66260001 
28 -0.426383 3.8181332 28 -2.000494 2.74418204 
29 -0.123079 3.96933909 29 -1.184456 2.82202945 
30 0.1992792 4.11189435 30 -0.40579 2.91311513 
31 0.2870069 4.25124382 31 0.1336452 3.0142497 
32 0.1481596 4.39428685 32 0.3388421 3.11624079 
33 -0.057112 4.54606022 33 0.270689 3.21733436 
34 -0.169545 4.70220147 34 0.0994152 3.31976407 
35 -0.124958 4.85631966 35 -0.039218 3.42368371 
36 0.0056925 5.00580567 36 -0.090874 3.52795955 
37 0.0990896 5.15206565 37 -0.070426 3.63205015 
38 0.0949267 5.29829843 38 -0.023131 3.73595408 
39 0.022476 5.44725782 39 0.013457 3.8397346 
40 -0.048225 5.59910302 40 0.0254597 3.94346043 
41 -0.06529 5.75155377 41 0.0184805 4.04721466 
42 -0.02853 5.9025788 42 0.0052727 4.15103812 
43 0.0207721 6.05175636 43 -0.004321 4.25491306 
44 -1.957948 6.24079283 44 -0.007059 4.35880166 
45 -1.977581 6.37602507 45 -0.004815 4.46267876 
46 -0.653693 6.49651726 46 -0.001148 4.56653809 
47 0.5377226 6.62317836 47 0.001352 4.67038533 
48 0.9517099 6.74351147 48 0.0019483 4.77422963 
49 0.6281808 6.8619101 49 0.0012463 4.87807737 
50 0.064775 7.00265505 50 0.0002347 4.98193013 

  
According to Table 1, the WFR controlled 

by FLC-PSO is almost always giving the smaller 
error for each step. It can be analyzed from all the 
values of the error, which is closed to zero. 
Besides that, it is almost always smaller compared 
to the normal one. It might the cause why the WFR 
controlled by FLC-PSO can smoothly following the 
wall. Additional to that, the achieved positions for 

every step are not much different from each other 
when the previous error is small. It is the base to 
state that although the WFR controlled by FLC-
PSO tends to be slower than the traditional ones, 
the speed is not that slow as the WFR. In order to 
easily see the comparative error of the different 
performances, Figure 14 is presented. 
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Figure 14. Graph of the Error Comparison between WFR Controlled by FLC and FLC-PSO 

 
 

At this point and according to Figure 14, it can be 
stated that the WFR controlled by FLC-PSO is 
better than the traditional one in terms of stability.  

Lastly, the optimization process of PSO can 
be done only by offline methods. Therefore, in 
order to operate the PSO as the online method 
applicable for tuning the FLC, a certain approach 
is involved in this experiment. It allows using the 
PSO directly when FLC controls the WFR. 
Therefore, as the final stage of this project, all the 
simulation results are then forwarded to the real 
robot platform (Figure 2). In order to apply it 
without any degradation to the performance of the 
WFR, the fast PSO is approached. It is an effective 
way to manipulate the obtained solution from 
simulation to real implementation. Essentially, it 
requires the only rearrangement of the range for 
each particle predetermined at the first step of 
PSO. 

 
CONCLUSION 

Adding the closed-loop controller of FLC on 
the WFR has been effectively leading the robot to 
work successfully. However, the performance still 
has a problem shown by the wobble movement. It 
is because of the random input causing the 
dynamic error. Once the main objective of using 
FLC lies in the arrangement of the membership 
function, the FLC can be enhanced by properly 
arrange the input or output membership function. 
In this experiment, the use of FLC is to produce 
the optimal value for the linear velocity 𝑣 when the 
angular velocity 𝜔 is predefined. This 
arrangement is impossible conducted by manual 
tuning because of the unpredictable input. 

Consequently, a manner based on PSO is 
proposed to enhance FLC controlling the WFR. 

Henceforth, it called an FLC-PSO algorithm. Since 
it is a type of heuristic optimization method, which 
operates based on the predicted future act, the 
PSO can only be clearly observed and validated 
by doing simulation. The simulation is done by 
adopting the differential steering system with the 
kinematic configuration of the used WFR. 
Accordingly, the proposed method has been 
significantly improving the performance of WFR by 
adequately arranging the input membership 
function of FLC. The smaller error proves it with 
smooth movement. Therefore, it can be concluded 
that the effectiveness and stability of the proposed 
method are satisfied. 
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