Identification of hazardous road sites: a comparison of blackspot methodology of Narogong Road Bekasi and Johor Federal Roads

Muhammad Isradi1, Hermanto Dwiatmoko1, Joewono Prasetyo2, Andri Irfan Rifai3, Zaffan Farhana Zainal2, Guohui Zhang3, Hendy Yusman Firdaus1

1Department of Civil Engineering, Faculty of Engineering, Universitas Mercu Buana, Indonesia
2Department of Transportation Engineering, Faculty of Engineering Technology, Universiti Tun Hussein Onn Malaysia, Malaysia
3Faculty of Civil Engineering and Planning, Universitas Internasional Batam, Indonesia
4Department of Civil and Environmental Engineering, University of Hawai‘i at Manoa, United States

Abstract
A traffic accident is an unexpected and inadvertent road event involving a vehicle with or without other road users that results in human injuries and possibly property damage. This study identifies and analyses the characteristics of Indonesian and Malaysian road traffic incidents. The method used was the identification of crash data coordinates and the Equivalent Accident Number (EAN) score per road segment. Accident characteristics are based on the type of road traffic accident, and collision is the most common type of accident. Speed data of two vehicles, cars and motorcycles, was collected through the test driver method by using the same vehicles for cars and motorcycles and following their normal driving habits. From the analysis results, some factors causing accidents on the Bekasi Narogong Road Section are the lack of traffic signs, road surface conditions, and lack of clear road markings. While on the FT050 Johor federal road, every kilometre per segment and along the segment, motorcycles are faster than cars in terms of speed.

This is an open access article under the CC BY-SA license

Keywords:
Blackspot; Crash analysis; Hazardous road location; Road safety; Road traffic accident

Article History:
Received: September 15, 2023
Revised: December 19, 2023
Accepted: December 26, 2023
Published: June 2, 2024

Corresponding Author:
Muhammad Isradi
Civil Engineering Department, Universitas Mercu Buana, Indonesia
Email: isradi@mercubuana.ac.id

INTRODUCTION
A traffic accident is an incident on a public or private road caused by carelessness or negligence by road users, vehicle maintenance, road conditions, or environmental factors, and a collision between a vehicle and an object or a vehicle and another vehicle resulting in death, injury, and/or serious injury recorded by the police [1]. The December 2018 publication of the 2018 Global Status Report on Road Safety by the World Health Organization focused on the 1.35 million annual road traffic deaths. Road traffic accidents are the leading cause of mortality among those aged 5 to 29. Pedestrians, cyclists, and motorcyclists endure a disproportionate amount of the burden, especially in developing countries [2].

Accidents involving land transportation modes have reached an alarming level in recent years. An accident is an incident that causes injury to individuals and can result in material losses or the death of a person [3]. One type of collision that occurs frequently is on highways and toll roads. According to the most recent data from Indonesia, 116,411 accidents occurred in 2019, with 25,671 fatalities, 12,475 serious injuries, and 137,342 minor injuries. In addition, IDR 254,779,000 in material losses [4].

According to the annual road safety report, every year between 2004 and 2013, road accidents or fatalities increased by 15% in line with rapid motorization as the number of registered vehicles doubled during the same period in Malaysia [5][6]. In addition, the road fatality rate is also high; for example, there were 23 deaths per 100,000 people in 2013. However, since 2000, the risk in terms of deaths per mile or per registered vehicle has decreased significantly due to the large increase in motorization in Malaysia [7].

Hazardous road locations vary; however, road safety administration must identify hazardous
Identifying hazardous road locations typically entails key aspects such as defining the location of routes and areas, establishing "hazardous" criteria, such as using frequency, speed, speed quality control, or crash potential reduction methods, and considering into account relevant factors such as exposure, such as traffic volume and traffic mix [9]. It is also necessary to determine the severity of crashes by giving greater weight to fatal crashes than injury crashes and the time period of the crash [10]. While all of these factors are essential for scientific crash analysis, this study, which presents preliminary findings from a larger-scale experiment, concentrates just on the first, namely location definition. The selection of the geographic unit of analysis has ramifications for all other components. Therefore, site definition is fundamental [11], such as determining crash frequency values and locating hazardous roads [12].

According to much research, the primary causes of road traffic accidents are human error, such as speeding, decreased concentration, errors caused by alcohol, infractions of traffic restrictions, exhaustion, and sleepiness [13]. Human mistakes can cause traffic accidents among drivers, passengers, and vulnerable road users such as pedestrians, cyclists, and motorcyclists [14]. Driver errors are common, the main ones being excessive speeding [15][16], long-distance driving tiredness, emotional driving [17], inexperienced driving and consuming alcohol [18][19].

Passengers can potentially enhance the likelihood of a traffic accident by distracting drivers [20]. Pedestrian mistakes, such as crossing in front of automobiles, walking on the road, and crossing the road away from crosswalks and streets near the facility, causes traffic accidents [21]. When analyzing environmental risk for road conditions, the physical environment (road design, weather conditions, fixed objects in the safety zone) and the socioeconomic environment (community norms, laws, and regulations) should be taken into consideration [22][23]. The impact of environmental hazards on road collisions is often represented in the literature by items in the safety zone (trees, power poles) [1][24]. Environmental risk factors frequently exacerbate the severity of accidents and serious injuries [25][26]. Vehicles colliding with trees is a typical roadside hazard [8][12]. The most prevalent things that cause vehicle accidents are roadside buildings (signs, fences, barriers, trees, and electrical) [22][25]. Weather has a detrimental impact on road traffic, increasing the severity of accidents and injuries [21]. The amount of rainfall influences the number of traffic accidents [27][28]. In addition, community zones with facilities (street food sellers, supermarkets) influence road traffic crashes and injuries [29].

Vehicle safety standards are necessary in all vehicles to protect the driver and passengers' safety [30]. Several studies have revealed vehicle characteristics that impact collision risk include poor maintenance and worn tyres [31][32]. Common factors contributing to accidents involving public or school transport vehicles include distracted braking, insufficient illumination, excessive loading, and improper usage or alteration of vehicles [33]. Lack of safety equipment in vehicles increases the risk of severe injuries, severe disabilities, and fatalities [34][35]. Transporting passengers in containers and pickup trucks is very dangerous, as passengers are not safe and can be thrown from the pickup or trapped inside the container [36][37]. If the engine burns out or people are stuck in the car, the accident's severity might worsen [38].

The accident rate approach and the equivalent accident frequency method are two of the most extensively utilized accident black spot detection methods. Non-experimental studies were done, for example, before and after the influence of a counting measure on the number of traffic accidents at a crossroads [39]. These approaches are also utilized as fundamental methods in accident black spot detection research, and they are enhanced or combined with other methods to improve identification efficiency and accuracy. Although the abovementioned procedures are basic, clear, and easy to calculate, they have limits. For example, two places with the same number of crashes may or may not have the same hazard level, but the crash frequency technique regards them as the same location. When applied to low-traffic routes, the accident rate approach becomes unclear, and it assumes a linear relationship between collision frequency and traffic volume, which may or may not be accurate [9][40].

This study aims to determine which segments are accident-prone areas, what factors cause accidents, and determine the speed characteristics of motorcycles and cars based on road geometry design. This research focuses on urban road segments in Bekasi, Indonesia and Johor, Malaysia.

Due to the increase in road accidents today, an unresolved issue is accidents at hazardous locations that cause inconvenience to road users. Accident statistics and an increase in the number
of cars are frequently used to identify dangerous road spots. Furthermore, accident statistics cannot explain the reasons that lead to accidents at that place. As a result, the real road environment issues of the road site are regarded as vital as road safety indicators in order to address road accidents. Road hazards include physical road defects such as potholes, intersections, including driveways, bends or curves in the road, the position or movement of other road users, a lack of appropriate road markings, poorly graded curves and uneven shoulders, and changes in weather and road conditions.

METHOD

Despite the fact that hotspot zones are hazardous to road users, there is no systematic mechanism for identifying them on road networks. Most previous studies have focused on hypothetical or selected routes rather than the complete road network [41].

The research site on the Bekasi Narogong Road section in Figure 1 is carried out in each segment by identifying blackspot accident-prone locations, which are grouped based on the coordinate points in the accident data.

Tabulating accident data coordinates Accident data is grouped based on the coordinates in the accident data, and the equivalent accident number (EAN) score per road segment is tabulated. The EAN scoring tabulation is obtained by giving points based on (1) [29]:

\[
EAN = 12 \text{FAT} + 3 \text{SVI} + 3 \text{MNI} + 1 \text{PDO} \quad (1)
\]

Where:
- \(\text{FAT}\) = Fatality
- \(\text{SVI}\) = a Severe injury
- \(\text{MNI}\) = a Minor Injury
- \(\text{PDO}\) = Property Damaged Only

Developing an EAN weighting diagram per road segment. The EAN weighting diagram per road segment combines the number of EAN points and road segments divided by km.

The average value plus the standard deviation value obtained from the calculation will be the limit in determining black spots, and then black spots will be determined. A black spot is a value greater than the feasibility interval line (average plus standard deviation) or that intersects with the line.

Determination of accident-prone locations using the statistical Upper Control Limit (UCL) quality control chart [42], which is shown in (2):

\[
UCL = \lambda + \Psi \sqrt{\left(\frac{\lambda}{m}\right) + \left(\frac{0.892}{m}\right) + \left(\frac{1}{2m}\right)} \quad (2)
\]

Where:
- \(\lambda\) = score of average accident
- \(\Psi\) = probability factor = 2.576
- \(m\) = score accidents in each segment

In the urban road section of Johor Malaysia, Federal Road 50 (FT050) was determined as the research site, as shown in Figure 2. The data collection was divided into multiple sections dependent on the location chosen. Included in the primary data were the speeds of two vehicles, cars and motorcycles. The information was collected using the test driver method, with vehicles and motorcycles using the same moving vehicle and exhibiting conventional driving behaviors. Data speed from signalized intersections was removed around 300 m to prevent the influence of traffic control devices on vehicle speeds and free flow speed [43].

Following data collection and road segmentation to identify the consistency model, the 85th percentile speed profile was created [32]. The segments are divided into analyses that include individual geometry and traffic circumstances before simulating the collisions of motorcycles and cars to facilitate comprehension. Speed data are analyzed to determine the impact of motorcycles and cars on road geometrics such as lane width, shoulder width, access point, length of tangent or curve, and medians, which may vary across the section.
Multiple linear regression analysis based on 5 km per segment is utilized in (2) model to forecast the 85th percentile speed of cars and motorcyclists based on speed, length of tangent/curve, shoulder width, median, and access point:

\[V_{85} = A_1 + A_2 (L) + A_3 (AP) + A_4 (SW) - A_5 (Q) \]

(2)

Where:

- \(A_1 \) = Speed of vehicle (km/h)
- \(L \) = Length tangent/curve (m)
- \(SW \) = Shoulder Width (m)
- \(AP \) = Access Point
- \(Q \) = Median

As a result, each independent variable's regression coefficients should be considerably different from zero, and each independent variable's symbol should adequately depict its influence on operating speed \[44\][45].

RESULTS AND DISCUSSION

Previous methodologies were utilized to identify and rank potential locations for safety enhancements. These approaches have eased the construction of roadways with heterogeneous traffic with varying speeds and behaviors; yet there may be mistakes because of selection issues and poor site selection.

Data on accidents on the Narogong Road between 2018 and 2020 are sorted. In addition, the statistics on the number of casualties and material losses in accidents are listed in Table 1.

Furthermore, the Upper Control Limit (UCL) value is determined, and accident-prone points are identified using the quality control statistics method as an Upper Control Limit (UCL) dick chart, which is based on the equivalent number of each kilometre or road segment with an EAN weight value greater than the UCL limit value. Calculations may be done utilizing the quality control statistics approach on each segment of the Narogong Road section based on the accident rate, as indicated in Table 2.

Table 2. Number of Victims and Losses of Accidents on Narogong Road

<table>
<thead>
<tr>
<th>Years</th>
<th>Fatal</th>
<th>Serious Injury</th>
<th>Minor Injury</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>2018</td>
<td>4</td>
<td>5</td>
<td>55</td>
<td>64</td>
</tr>
<tr>
<td>2019</td>
<td>12</td>
<td>19</td>
<td>41</td>
<td>72</td>
</tr>
<tr>
<td>2020</td>
<td>6</td>
<td>11</td>
<td>39</td>
<td>56</td>
</tr>
<tr>
<td>Total</td>
<td>22</td>
<td>35</td>
<td>135</td>
<td>192</td>
</tr>
</tbody>
</table>

Based on Table 2, accident victims and material losses are Rp. 104,100,000, with a total of 192 victims. Minor injuries alone ranked the highest at 135 people, followed by serious injuries of 35 people, and 22 people died. 2019 was the year with the highest number of victims, with 72 and 64 victims in 2018.

Analysis of Accident-Prone Areas

Analysis of hazardous areas The Equivalent Accident Number (EAN) approach was used in this study to define accident-prone locations by sorting based on the mortality rate of accident victims that happened on the Narogong Roads Section. EAN is determined by adding each victim's mortality rate multiplied by the severity weight, as shown in (1) shown in Table 3.

According to Figure 3, segment 3 is an accident-prone location on the Narogong Highway Road, with the most vulnerable EAN and UCL values among other segments, approximately IDR 18,250,000 in material damages. As a result, careful management is required to limit accidents at that place.

Table 3. EAN Calculation Results for Research Location

<table>
<thead>
<tr>
<th>Segment</th>
<th>Fat</th>
<th>SVI</th>
<th>MNI</th>
<th>EAN Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>75</td>
<td>187,025</td>
<td>No Prone</td>
<td>49800000</td>
</tr>
<tr>
<td>2</td>
<td>240</td>
<td>185,255</td>
<td>No Prone</td>
<td>20250000</td>
</tr>
<tr>
<td>3</td>
<td>261</td>
<td>185,157</td>
<td>Prone</td>
<td>18250000</td>
</tr>
<tr>
<td>4</td>
<td>156</td>
<td>185,798</td>
<td>No Prone</td>
<td>15300000</td>
</tr>
<tr>
<td>Total</td>
<td>732</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 3. Accident Rate Ranking Graph with EAN and UCL Methods
Operating Speed Model

The operating speed data was collected by 100 test drivers and motorcyclists using GPS devices, and they were directed to execute the test during the day and in unrestricted movement along the specified sectors. The site of FT 050 is divided into three portions. To build an operating speed model in chosen segments, tangent length, curve length, shoulder width, median, and access point were used as independent variables.

Table 4 illustrates the analysis of variance outputs for motorcycles, while Table 5 provides the analysis of car variance outputs. The degrees of freedom for each source of variation indicate the number of effects at that level minus the number of restrictions.

The regression coefficient outputs are shown in Table 6, which shows the regression coefficients of motorcycles, and Table 7, which shows the regression coefficients of cars.

A statistical relationship between a dependent variable and an independent variable; consequently, the equations for motorcycle operating speed:

\[
V_{85M} = 94.1 - 13.2 L + 0.564 AP - 8.27 SW - 3.43 R \\
R^2 = 0.61
\]

\[
V_{85C} = 95.7 - 6.30 L - 0.535 AP - 5.59 SW - 1.89 Q \\
R^2 = 0.61
\]

Figure 4 represents the best fit linear relationship between observed and predicted speeds for motorcycles. Figure 5 shows the relationship between observed and projected speeds for cars.

<table>
<thead>
<tr>
<th>Predictor</th>
<th>Coefficient</th>
<th>SE Coefficient</th>
<th>T</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>95.665</td>
<td>3.575</td>
<td>26.76</td>
<td>0.000</td>
</tr>
<tr>
<td>Length (m)</td>
<td>-6.297</td>
<td>3.093</td>
<td>-2.04</td>
<td>0.047</td>
</tr>
<tr>
<td>AP</td>
<td>-0.5350</td>
<td>0.2611</td>
<td>-2.05</td>
<td>0.046</td>
</tr>
<tr>
<td>SW</td>
<td>-5.592</td>
<td>2.619</td>
<td>-2.14</td>
<td>0.038</td>
</tr>
<tr>
<td>Median</td>
<td>-1.8909</td>
<td>0.5903</td>
<td>-3.20</td>
<td>0.003</td>
</tr>
</tbody>
</table>

The vehicle speed for both motorcycles and autos rejects the null hypothesis since \(F_{0.05} > F_{\text{critical}} \), and the difference is substantial. Furthermore, the observed speed is greater than the expected speed.

Based on the analysis of Narogong Bekasi Road, several factors trigger accidents, such as the lack of traffic signs, some faded road markings, sidewalk fence safety, and uneven road conditions that increase the number of accidents. On the FT050 Johor federal road, the triggering factors for accidents are geometric elements related to motorbike speed and car speed, illegal parking, and uneven road markings of the lane width and shoulder width.
Both roads are accident-prone areas, so it is necessary to conduct a comparative study of the causes of accidents on these roads. In particular, the authorities need to improve geometric elements, road conditions, and speed restrictions, especially in hazardous road locations.

CONCLUSION

Based on the results of the segment analysis, segment 3 was identified as an accident-prone area with an EAN value of 216 69 accidents and a total material loss of IDR 18,250,000. Accident-causing factors include a lack of traffic signs, road markings that are incomplete or faded, the absence of safety fences and sidewalks, road damage, and uneven road conditions.

According to the results, motorcycles are faster than cars for every km per segment and along segments, and the speed thresholds for motorcycles and cars are the same. Speed characteristics are determined by geometric components such as shoulder width, lane width, median, and access points, which impact road safety or a road accident for motorcyclists and cars. Road geometry and driver attitude impact the link between geometric elements and vehicle speed.

ACKNOWLEDGMENT

This research is an international collaboration research program (KLN) supported by Mercu Buana University and Universiti Tun Hussein Onn Malaysia. In addition, we are grateful to our colleagues from the Research and Community Service Center of Universitas Mercu Buana and all the reviewers who have provided insights and expertise that immensely helped this research.

REFERENCES

M. Isradi et al., Identification of hazardous road sites: a comparison of blackspot …

M. Isradi et al., Identification of hazardous road sites: a comparison of blackspot ...