Studi Transisi Saluran Transmisi Planar – Substrate Integrated Waveguide

Mudrik Alaydrus

Abstract


Perkembangan sistim komunikasi wireless mendorong dipergunakannya spectrum frekuensi yang tinggi untuk mendapatkan peluang memberikan sistim dengan kecepatan transfer data yang tinggi. Substrate Integrated Waveguide (SIW) adalah saluran transmisi yang mampu menghantarkan sinyal frekuensi tinggi dengan kerugian yang kecil, tetapi memiliki kemampuan mengintegrasikan banyak komponen. Untuk melewatkan sinyal dari saluran planar ke SIW diperlukan struktur transisi yang memiliki factor refleksi yang kecil. Di penelitian ini pertama-tama dilakukan studi dasar struktur SIW dengan variasi besaran pentingnya, yaitu efek dari diameter silinder metal d dan jarak pitch antar silinder p dan studi terhadap macam-macam jenis dan bentuk transisi yang telah diperkenalkan berbagai publikasi dan dilakukan telaah terhadap realibilitasnya dan kemungkinan pengembangannya.

Keywords


coaxial; microstrip; millimeter wave; SIW

Full Text:

PDF

References


S.K.Wilson, S. Wilson, E. Biglieri, Transmission Techniques for Digital Communications, Academic Press, 2016.

M. Alaydrus, Cognitive Radio: Sistim Radio Cerdas, Incomtech, Vol. 1, No.2, 2010, p. 130-143

K. Khalaf, V. Vidojkovic, P. Wambacq, J.R. Long, Data Transmission at Millimeter Waves, Springer, 2015.

M. Bozzi, A. Georgiadis, K. Wu, Review of substrate-integrated waveguide circuits and antennas, IET Microwaves, Antennas & Propagation, 2011, Vol. 5, Iss. 8, pp. 909-920.

P.A. Rizzi, Microwave Engineering: Passive Circuits, Pearson, 1987.

M. Alaydrus, Saluran Transmisi Telekomunikasi, Graha Ilmu, Jogjakarta, 2009.

M. Alaydrus, Antena: Prinsip dan Aplikasi, Graha Ilmu, Jogjakarta, 2011.

Xu, F., Wu, K.: ‘Guided-wave and leakage characteristics of substrate integrated waveguide’, IEEE Trans. Microw. Theory Tech., vol. 53, no.1, 2005, pp. 66–73.

D. Deslandes and K. Wu, “Accurate Modeling, Wave Mechanisms, and Design Considerations of a Substrate Integrated Waveguide,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 6, pp. 2516–2526, 2006.

Cassivi, Y., Perregrini, L., Arcioni, P., Bressan, M., Wu, K., Conciauro, G.: ‘Dispersion characteristics of substrate integrated rectangular waveguide’, IEEE Microw. Wirel. Compon. Lett., 2002, 12, (9), pp. 333–335.

D. Deslandes and K. Wu, “Integrated Microstrip and Rectangular Waveguide in Planar Form,” IEEE Microw. Wirel. Components Lett., vol. 11, no. 2, 2001, p. 68-70.

D. Deslandes and K. Wu, “Single-Substrate Integration Technique of Planar Circuits and Waveguide Filters,” IEEE Trans. Microwave Theory Tech., vol. 51, no. 2, pp. 593-596, Feb. 2003.

H. Nam, T.-S. Yun, K.-B. Kim, K.-C. Yoon, J.-C. Lee, “Ku-band transition between microstrip and substrate integrated waveguide (SIW),” Asia-Pacific Microwave Conference Proceedings (APMC), vol. 1, 1–4, 2005.

T. H. Yang, C. F. Chen, T. Y. Huang, C. L. Wang, R. B. Wu, “A 60GHz LTCC transition between microstrip line and substrate integrated waveguide,” Asia-Pacific Microwave Conference Proceedings (APMC), vol. 1, 4–7, 2005.

M. Abdolhamidi, A. Enayati, M. Shahabadi, and R. Faraji-dana, “Wideband Single-Layer DC-Decoupled Substrate Integrated Waveguide (SIW) - to - Microstrip Transition Using an Interdigital Configuration,” in Proceeding of Asia-Pacific Microwave Conference, 2007, pp. 7–10.

C. Yau, T. Huang, T. Shen, H. Chien, and R. Wu, “Design of 30GHz Transition between Microstrip Line and Substrate Integrated Waveguide Z-d,” in Asia-Pacific Microwave Conference Proceedings, APMC, 2007, pp. 0–3.

Y. Ding, K. Wu, “Substrate integrated waveguide-to-microstrip transition in multilayer substrate,” IEEE Transactions on Microwave Theory and Techniques, vol. 55, no. 12, 2839–2844, 2007.

D. Hammou, E. Moldovan, and S. O. Tatu, “V-Band Microstrip to Standard Rectangular Waveguide Transition Using a Substrate Integrated Waveguide (SIW),” J. Electromagn. Waves Appl., vol. 23, pp. 221–230, 2009.

S. Georgakopoulos and S. Ogurtsov, “An S-parameter Extraction Technique for Broad-Band Characterization of Microstrip-to-SIW Transitions,” in Antennas and Propagation Society International Symposium, 2009. APSURSI ’09. IEEE, 2009, pp. 7–10.

D. Deslandes, “Design Equations for Tapered Microstrip-to-Substrate Integrated Waveguide Transitions,” IEEE MTT-S International, 2010, pp. 704–707.

F. Bauer, W. Menzel, “A wideband transition from substrate integrated waveguide to differential microstrip lines in multilayer substrates,” 40th European Microwave Conference (EuMC), 811–813, 2010.

E. Miralles, H. Esteban, C. Bachiller, A. Belenguer, and V. E. Boria, “Improvement for the Design Equations for Tapered Microstrip-to-Substrate Integrated Waveguide Transitions,” in Electromagnetics in Advanced Applications (ICEAA), 2011 International Conference on, 2011, no. 1, pp. 652–655.

D.-K. Cho, H.-Y. Lee, “A new broadband microstrip-to-SIW transition using parallel HMSIW,” Journal of Electromagnetic Engineering and Science, vol. 12, no. 2, 171–175, 2012.

F. Taringou, J. Bornemann, T. Weiland, “Wideband Transitions from Substrate-Integrated Waveguide to Coupled Microstrip Lines and Their Applications to Power Dividers,” in 4A2-05 Proceedings of APMC 2012, Kaohsiung, Taiwan, 2012, no. c, pp. 857–859.

E. D. Caballero, A. B. Martinez, H. E. Gonzalez, O. M. Belda, V. B. Esbert, “A novel transition from microstrip to a substrate integrated waveguide with higher characteristic impedance,” IEEE MTT-S International Microwave Symposium Digest (IMS), 1–4, 2013.

M. I. Nawaz, Z. Huiling, and M. Kashif, “Substrate Integrated Waveguide (SIW ) to Microstrip Transition at X-Band,” in Proceedings of the 2014 International Conference on Circuits, Systems and Control, 2014, pp. 61–63.

Z. Kordiboroujeni and J. Bornemann, “New wideband transition from microstrip line to substrate integrated waveguide,” IEEE Transactions on Microwave Theory and Techniques, vol. 62, no.12, 2983-2989, 2014.

P. Wu, J. Liu, and Q. Xue, “Wideband Excitation Technology of TE20 Mode Substrate Integrated Waveguide and its Applications,” IEEE Trans. Microw. Theory Tech., vol. 63, no. 6, pp. 1863–1874, 2015.

R. C. Caleffo, “New Design Procedure to Determine the Taper Transition for Impedance Matching Between Microstrip Line and SIW Component,” J. Microwaves, Optoelectron. Electromagn. Appl., vol. 15, no. 3, pp. 247–260, 2016.

D. Eom and H. Lee, “Substrate Integrated Waveguide Transitions to Planar Transmission Lines Using Lumped Elements and Their Applications,” IEEE Trans. Microw. Theory Tech., vol. 64, no. 12, pp. 4352–4361, 2016.

F. Grine, M. T. Benhabiles, and M. L. Riabi, “Ku - band Transition with not Metalized Air - Vias between Microstrip Line and Substrate Integrated Waveguide,” J. Microwaves, Optoelectron. Electromagn. Appl., vol. 16, no. 1, pp. 50–58, 2017.

D. Deslandes and K. Wu, “Integrated Transition of Coplanar to Rectangular Waveguides,”IEEE MTT-S International, 2001, pp. 3–6.

F. Taringou and J. Bornemann, “New Substrate-Integrated to Coplanar Waveguide Transition,” in Proceedings of the 41st European Microwave Conference, 2011, no. October, pp. 428–431.

F. Taringou and J. Bornemann, “New Interface Design from Substrate-Integrated to Regular Coplanar Waveguide,” in Proceedings of the Asia-Pacific Microwave Conference 2011, 2011, no. c, pp. 403–406.

F. Taringou, J. Bornemann, and K. Wu, “Experimental Verification of Coplanar-to-Substrate-Integrated- Waveguide Interconnect on Low-Permittivity Substrate,” in 2013 Asia-Pacific Microwave Conference Proceedings, 2013, pp. 1–3.

F. Taringou, J. Bornemann, K. Wu, T. Weiland, “Broadband Interconnects Between Coplanar Waveguide and Substrate Integrated Waveguide for Dense Packaging and Integration,” in Microwave Symposium (IMS), 2014 IEEE MTT-S International, 2014, pp. 8–10.

F. Taringou, D. Dousset, J. Bornemann, and K. Wu, “Substrate-Integrated Waveguide Transitions To Planar Transmission-Line Technologies,” in Microwave Symposium Digest (MTT), 2012 IEEE MTT-S International, 2012, pp. 11–13.

F. Taringou, T. Weiland, J. Bornemann,“Broadband Design of Substrate Integrated Waveguide to Stripline Interconnect,” in Numerical Electromagnetic Modeling and Optimization for RF, Microwave, and Terahertz Applications (NEMO), 2014 International Conference on, 2014, pp. 9–12.

T. Jaschke, B. Rohrdantz, W. M. Gitzel, and A. F. Jacob, “Modeling and Design of Stepped Transitions for Substrate-Integrated Waveguides,” in GeMiC 2016, 2016, no. 1, pp. 124–127.

A.Morini, M. Farina, C. Cellini, T. Rozzi, and G. Venanzoni, “Design of low-cost non-radiative SMA-SIW launchers,” in Proc. 36th Eur. Microw. Conf., Sep. 2006, pp. 526–529.

E. Arnieri, G. Amendola, L. Boccia, and G. D. Massa, “Coaxially fed substrate integrated radiating waveguides,” in Proc. IEEE Antennas Propag. Soc. Int. Symp., Jun. 2007, pp. 2718–2721.

S. Mukherjee, P. Chongder, K. V. Srivastava, and A. Biswas, “Design of a broadband coaxial to substrate integrated waveguide (SIW) transition,” in Proc. Asia-Pasific. Microw. Conf., Nov. 2013, pp. 896–898.

A. A. Khan, M. K. Mandal, and R. Shaw, “A compact and wide- band SMA connector to empty substrate integrated waveguide (ESIW) transition,” in Proc. IEEE MTT-S Int. Microw. RF Conf. (IMaRc), Dec. 2015, pp. 246–248.

A. A. Khan, M. K. Mandal, and S. Member, “A Compact Broadband Direct Coaxial Line to SIW Transition,” IEEE Microw. Wirel. Components Lett., vol. 26, no. 11, pp. 894–896, 2016.

N. Marcuvitz, Waveguide Handbook, IEE Electromagnetic Waves Series, 1985




DOI: http://dx.doi.org/10.22441/incomtech.v7i2.1170



Publisher Address:
Magister Teknik Elektro, Universitas Mercu Buana
Jl. Meruya Selatan 1, Jakarta 11650
Phone (021) 31935454/ 31934474
Fax (021) 31934474
Email: [email protected]
Website of Master Program in Electrical Engineering
http://mte.pasca.mercubuana.ac.id

pISSN: 2085-4811
eISSN: 2579-6089
Jurnal URL: http://publikasi.mercubuana.ac.id/index.php/Incomtech
Jurnal DOI: 10.22441/incomtech

Lisensi Creative Commons
Ciptaan disebarluaskan di bawah Lisensi Creative Commons Atribusi-NonKomersial 4.0 Internasional

.

Web
Analytics Made Easy - StatCounter
View My Stats

The Journal is Indexed and Journal List Title by: