Efek Transformasi Geometri Shearing Pada Sistem Pengenalan Biometrik Wajah dan Periocular

Regina Lionnie

Abstract


Daerah periocular mengacu pada atribut di sekitar mata yang kaya akan informasi. Atribut periocular yang digunakan pada penelitian ini adalah area mata dan alis. Sistem pengenalan biometric menggunakan ciri periocular dan wajah akan dibangun dengan sebelumnya memberikan transformasi shearing pada data gambar input. Input dari sistem adalah gambar periocular yang berasal dari dataset UBIPr dan wajah dari dataset EYB. Dengan menggunnakan metode machine learning tree dan k-nearest neighbor, output yang dihasilkan adalah confusion matrix. Hasil penelitian memperlihatkan bahwa tanpa menggunakan metode ekstraksi fitur, penggunaan transformasi shearing tidak memperbaiki hasil performansi sistem pengenalan dalam meningkatkan nilai akurasi.


Keywords


biometric, periocular recognition, face recognition, transformasi shearing

Full Text:

PDF

References


Kumari, P. and K. R. Seeja, “Periocular biometrics: A survey,” J. King Saud Univ. - Comput. Inf. Sci., vol. 34, no. 4, pp. 1086–1097, Apr. 2022, doi: 10.1016/J.JKSUCI.2019.06.003.

Kumar, M. A. Zaveri, S. Bakshi, and P. K. Sa, “Who is behind the Mask: Periocular Biometrics when Face Recognition Fails,” ICPC2T 2022 - 2nd Int. Conf. Power, Control Comput. Technol. Proc., 2022, doi: 10.1109/ICPC2T53885.2022.9777027.

Monteiro, J., Esteves, R., Santos, G., Fiadeiro, P., Lobo, J., & Cardoso, J. (2015). A Comparative Analysis of Two Approaches to Periocular Recognition in Mobile Scenarios. , 268-280. https://doi.org/10.1007/978-3-319-27863-6_25.

C. N. Padole and H. Proenc¸a. Periocular recognition: Analysis of performance degradation factors. In ICB, pages 439–445, 2012

Nakamura, T., Yoshiura, H., & Ichino, M. (2021). Periocular Recognition Based on Features from Thermal and Visible-Light Images. 2021 IEEE 10th Global Conference on Consumer Electronics (GCCE), 980-981. https://doi.org/10.1109/GCCE53005.2021.9621934.

Jung, Y., Park, J., Tiong, L., & Teoh, A. (2020). Periocular recognition in the wild with learned label smoothing regularization. , 11519, 115190T - 115190T-8. https://doi.org/10.1117/12.2573072.

Kumar, K., Lala, A., Vyas, R., & Sharma, M. (2020). Periocular recognition via effective textural descriptor. 2020 IEEE 7th Uttar Pradesh Section International Conference on Electrical, Electronics and Computer Engineering (UPCON), 1-6. https://doi.org/10.1109/UPCON50219.2020.9376575.

R. Lionnie, C. Apriono, R. Chai and D. Gunawan, "Curvature Best Basis: A Novel Criterion to Dynamically Select a Single Best Basis as the Extracted Feature for Periocular Recognition," in IEEE Access, vol. 10, pp. 113523-113542, 2022, doi: 10.1109/ACCESS.2022.3217243.

Georghiades, P. N. Belhumeur and D. J. Kriegman, "From few to many: illumination cone models for face recognition under variable lighting and pose," in IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 23, no. 6, pp. 643-660, June 2001, doi: 10.1109/34.927464.

Lee, K. C., Ho, J., & Kriegman, D. J. (2005). Acquiring linear subspaces for face recognition under variable lighting. IEEE Transactions on pattern analysis and machine intelligence, 27(5), 684-698.




DOI: http://dx.doi.org/10.22441/incomtech.v14i3.21685

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Publisher Address:
Magister Teknik Elektro, Universitas Mercu Buana
Jl. Meruya Selatan 1, Jakarta 11650
Phone (021) 31935454/ 31934474
Fax (021) 31934474
Email: [email protected]
Website of Master Program in Electrical Engineering
http://mte.pasca.mercubuana.ac.id

pISSN: 2085-4811
eISSN: 2579-6089
Jurnal URL: http://publikasi.mercubuana.ac.id/index.php/Incomtech
Jurnal DOI: 10.22441/incomtech

Lisensi Creative Commons
Ciptaan disebarluaskan di bawah Lisensi Creative Commons Atribusi-NonKomersial 4.0 Internasional

.

Web
Analytics Made Easy - StatCounter
View My Stats

The Journal is Indexed and Journal List Title by: