Penerapan FP-Growth dan Random Forest dalam Analisis Data Penjualan Makanan Ringan

Irfan Ricky Afandi, Irma Wahyuningtyas, Sewin Fathurrohman, Firman Noor Hasan

Abstract


Penelitian ini bertujuan untuk menganalisis pola pembelian produk makanan ringan serta memprediksi penjualan produk dengan menggunakan pendekatan data mining dan machine learning. Dalam industri makanan ringan yang semakin kompetitif pemahaman mendalam tentang pola perilaku konsumen dan tren penjualan produk sangat penting untuk pengambilan keputusan bisnis yang lebih efektif serta peningkatan profitabilitas perusahaan. Tantangan utama dalam penelitian ini adalah mengidentifikasi variabel yang relevan dalam dataset penjualan untuk mengungkap pola asosiasi antar produk dan menghasilkan prediksi penjualan yang akurat. Metodologi yang digunakan dalam penelitian ini melibatkan algoritma FP-Growth untuk menemukan asosiasi produk yang sering dibeli bersamaan serta algoritma Random Forest untuk memprediksi penjualan berdasarkan data historis. Hasil penelitian dari penerapan algoritma FP-Growth mampu mengidentifikasi sembilan aturan asosiasi yang potensial untuk diterapkan dalam sistem rekomendasi produk untuk menyediakan rekomendasi produk yang lebih personal kepada konsumen. Selain itu, model prediksi menggunakan Random Forest menunjukkan performa yang baik dengan nilai Mean Absolute Error (MAE) sebesar 23,54, Root Mean Squared Error (RMSE) sebesar 36,36 dan R-squared sebesar 0,86 dengan keseluruhan menunjukkan tingkat akurasi yang cukup baik. Penelitian ini memberikan kontribusi penting dalam optimasi stok dan strategi pemasaran berbasis data. Penelitian lanjutan disarankan menggunakan data yang lebih bervariasi dan periode waktu yang lebih panjang untuk meningkatkan akurasi prediksi.


Keywords


FP-Growth; Random Forest; Rekomendasi Produk; Prediksi Penjualan;

Full Text:

PDF

References


F. N. Hasan and R. Ariyansah, “Utilization of the FP-Growth Algorithm on MSME Transaction Data:Recommendations for Small Gifts from The Padang Region,” J. Tek. Inform., vol. 17, no. 1, p. 71, 2024, doi: 10.15408/jti.v17i1.37966.

U. Arfan and N. Paraga, “The Comparison of K-Means, Naïve Bayes and Decision Tree Algorithm in Predicting Fuel Oil Sales,” MALCOM Indones. J. Mach. Learn. Comput. Sci., vol. 4, no. 4, p. 1379, 2024, doi: https://doi.org/10.57152/malcom.v4i4.1566.

X. Han, J. Sun, and W. Wang, “Machine learning-based analysis of factors influencing the popularity of vitamin online sales,” in Proceedings of the 2023 4th International Conference on Big Data Economy and Information Management, 2023, p. 819. doi: https://doi.org/10.1145/3659211.3659352.

Y. Li, H. Zhao, Y. Wang, and B. Yu, “Research on Vegetable Sales Data Analysis and Cost Pricing Modeling,” in 3rd International Conference on Governance of Accounting and Global Business Management (GAGBM 2024), 2024, vol. 29, p. 155. doi: 10.54097/pz7q1302.

M. A. Zarkhasy and C. Satria, “Determining and Managing Stock of Goods Based on Purchasing Patterns Using the Frequent Pattern Growth Algorithm,” Int. J. Eng. Comput. Sci. Appl., vol. 3, no. 1, p. 4, 2023, doi: 10.30812/ijecsa.v3i1.3416.

Y. Liu, “Big Data Mining Method of New Retail Economy Based on Association Rules,” in Proceedings of the 2022 International Conference on Bigdata Blockchain and Economy Management (ICBBEM 2022), 2023, p. 1584. doi: 10.2991/978-94-6463-030-5_159.

H. Hairani and J. Ximenes Guterres, “Exploring Customer Purchasing Patterns: A Study Utilizing FP-Growth Algorithm on Supermarket Transaction Data,” Int. J. Eng. Comput. Sci. Appl., vol. 3, no. 1, p. 34, 2024, doi: 10.30812/ijecsa.v3i1.3874.

A. K. Sah and V. K, “Predictive Modeling for Restaurant Menu Customization: An FP-Growth Algorithm-Based Solution,” in 2024 IEEE International Students’ Conference on Electrical, Electronics and Computer Science (SCEECS), 2024, p. 5. doi: 10.1109/SCEECS61402.2024.10482175.

R. Ajay, R. S. Joel, and P. G. O. Prakash, “Analyzing and Predicting the Sales Forecasting using Modified Random Forest and Decision Tree Algorithm,” in 2023 8th International Conference on Communication and Electronics Systems (ICCES), 2023, p. 1645. doi: 10.1109/ICCES57224.2023.10192723.

A. Zikri, A. Nazir, S. Sanjaya, E. Haerani, and I. Afrianty, “The Random Forest algorithm for classifying stunting in toddlers based on anthropometric data,” Int. J. Multidiscip. Res. Growth Eval., vol. 5, no. 3, p. 932, 2024, doi: 10.54660/.ijmrge.2024.5.3.931-937.

C. Jia, “Prediction method of product market demand based on Prophet random forest,” Int. J. Prod. Dev., vol. 28, no. 1–2, p. 61, 2024, doi: https://doi.org/10.1504/IJPD.2024.137814.

S. Wu, Z. Zhang, and Y. Ru, “Research on Product Demand Forecasting Based on Random Forest and ARIMA Time Series : Precision Forecasting Method for Data-Scarce Environments,” in Transactions on Computer Science and Intelligent Systems Research, 2024, p. 1328. doi: https://doi.org/10.62051/g9r9ca46.

H. Zhang and Z. Yan, “Vegetable Price Forecasting Based on ARIMA Model and Random Forest Prediction,” J. Educ. Humanit. Soc. Sci., vol. 25, no. 1, p. 82, 2024, doi: 10.54097/3afpgv27.

R. Xu, “the Evaluation of Ethnic Costume Courses Based on Fp-Growth Algorithm,” Scalable Comput. Pract. Exp., vol. 25, no. 1, p. 316, 2024, doi: 10.12694/scpe.v25i1.2297.

X. Li and M. F. Rosas, “Career Recommendation System Design Based on FP-growth Algorithm,” in Proceedings of the 3rd International Conference on Internet Technology and Educational Informatization, ITEI 2023, 2024, p. 4. doi: 10.4108/eai.24-11-2023.2343709.

H. Patil, T. Mukherjee, K. Pandit, H. Jani, P. K. Jha, and V. Agarwal, “Enhancing Retail Strategies through Apriori, ECLAT& FP Growth Algorithms in Market Basket Analysis,” Int. J. Recent Innov. Trends Comput. Commun., vol. 11, no. 9, p. 3836, 2023, doi: 10.17762/ijritcc.v11i9.9637.

S. M. K. Sistla, G. Krishnamoorthy, J. Jeyaraman, and B. K. Konidena, “Machine Learning for Demand Forecasting in Manufacturing,” Int. J. Multidiscip. Res., vol. 6, no. 1, p. 6, 2024, doi: 10.36948/ijfmr.2024.v06i01.14204.

J. E. A. Cabanlit, K. D. Dela Cruz, and Mathematics, “Root Mean Square Error of the Maximum Likelihood Estimate of the Parameters of Pareto Distribution,” Int. J. Sci. Adv., vol. 4, no. 5, p. 715, 2023, doi: 10.51542/ijscia.v4i5.6.

L. Diane and P. Brijlal, “Forecasting Stock Market Realized Volatility using Random Forest and Artificial Neural Network in South Africa,” Int. J. Econ. Financ. Issues, vol. 14, no. 2, p. 12, 2024, doi: 10.32479/ijefi.15431.




DOI: http://dx.doi.org/10.22441/incomtech.v15i1.30260

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Publisher Address:
Magister Teknik Elektro, Universitas Mercu Buana
Jl. Meruya Selatan 1, Jakarta 11650
Phone (021) 31935454/ 31934474
Fax (021) 31934474
Email: [email protected]
Website of Master Program in Electrical Engineering
http://mte.pasca.mercubuana.ac.id

pISSN: 2085-4811
eISSN: 2579-6089
Jurnal URL: http://publikasi.mercubuana.ac.id/index.php/Incomtech
Jurnal DOI: 10.22441/incomtech

Lisensi Creative Commons
Ciptaan disebarluaskan di bawah Lisensi Creative Commons Atribusi-NonKomersial 4.0 Internasional

.

Web Analytics Made Easy - StatCounter
View My Stats

The Journal is Indexed and Journal List Title by: