Analisis Performa Model Deep Learning dalam Deteksi Penyakit Mata: Studi CNN, RNN, dan FNN
Abstract
Keywords
Full Text:
PDFReferences
WHO, “Kebutaan dan gangguan penglihatan,” https://www.who.int/news-room/fact-sheets/detail/blindness-and-visual-impairment.
F. Nurona Cahya et al., “Klasifikasi Penyakit Mata Menggunakan Convolutional Neural Network ( CNN),” 2021. [Online]. Available: http://sistemasi.ftik.unisi.ac.id
S. J. Emery-Corbin et al., “Eukaryote-conserved methylarginine is absent in diplomonads and functionally compensated in Giardia,” Mol Biol Evol, vol. 37, no. 12, pp. 3525–3549, Dec. 2020, doi: 10.1093/molbev/msaa186.
S. Dutta, B. C. S. Manideep, S. M. Basha, R. D. Caytiles, and N. C. S. N. Iyengar, “Classification of diabetic retinopathy images by using deep learning models,” International Journal of Grid and Distributed Computing, vol. 11, no. 1, pp. 89–106, 2018, doi: 10.14257/ijgdc.2018.11.1.09.
F. Nurona Cahya et al., “Klasifikasi Penyakit Mata Menggunakan Convolutional Neural Network ( CNN),” 2019. [Online]. Available: http://sistemasi.ftik.unisi.ac.id
William and C. Lubis, “KLASIFIKASI PENYAKIT MATA MENGGUNAKAN CNN,” Jurnal Ilmu Komputer dan Sistem Informasi , vol. 10, no. 1, 2022, [Online]. Available: https://www.kaggle.com/nafizimtiazkhan/cataract-
O. Bernabe, E. Acevedo, A. Acevedo, R. Carreno, and S. Gomez, “Classification of Eye Diseases in Fundus Images,” IEEE Access, vol. 9, pp. 101267–101276, 2021, doi: 10.1109/ACCESS.2021.3094649.
M. S. Junayed, M. B. Islam, A. Sadeghzadeh, and S. Rahman, “CataractNet: An automated cataract detection system using deep learning for fundus images,” IEEE Access, vol. 9, pp. 128799–128808, 2021, doi: 10.1109/ACCESS.2021.3112938.
S. Dutta, B. C. S. Manideep, S. M. Basha, R. D. Caytiles, and N. C. S. N. Iyengar, “Classification of diabetic retinopathy images by using deep learning models,” International Journal of Grid and Distributed Computing, vol. 11, no. 1, pp. 89–106, 2018, doi: 10.14257/ijgdc.2018.11.1.09.
Y. Julia Nurriski and Alamsyah, “Optimasi Deep Convolutional Neural Network (Deep CNN) untuk Deteksi Aritmia Melalui Sinyal EKG Menggunakan Arsitektur Conv1D,” Indonesian Journal of Mathematics and Natural Sciences, vol. 46, no. 1, 2023, [Online]. Available: http://journal.unnes.ac.id/nju/index.php/JM
M. Zahir and R. Adi Saputra, “DETEKSI PENYAKIT RETINOPATI DIABETES MENGGUNAKAN CITRA MATA DENGAN IMPLEMENTASI DEEP LEARNING CNN,” 2024. [Online]. Available: https://www.kaggle.com/datasets/gunavenkatdoddi/eye-diseases-classification
K. Azmi, S. Defit, and Sumijan, “Implementasi Convolutional Neural Network (CNN) Untuk Klasifikasi Batik Tanah Liat Sumatera Barat,” Jurnal Unitek, vol. 16, no. 1, 2023.
D. Esterlina Br Jabat, L. Yanti Sipayung, and K. Raih Syahputra Dakhi, “PENERAPAN ALGORITMA RECURRENT NEURAL NETWORKS (RNN) UNTUK KLASIFIKASI ULOS BATAK TOBA,” SNISTIK : Seminar Nasional Inovasi Sains Teknologi Informasi Komputer , vol. 1, no. 2, 2024.
S. Gheisari et al., “A combined convolutional and recurrent neural network for enhanced glaucoma detection,” Sci Rep, vol. 11, no. 1, Dec. 2021, doi: 10.1038/s41598-021-81554-4.
D. Aprillia, T. Rohana, T. Al Mudzakir, and D. Wahiddin, “Deteksi Nominal Mata Uang Rupiah Menggunakan Metode Convolutional Neural Network dan Feedforward Neural Network,” KLIK: Kajian Ilmiah Informatika dan Komputer, vol. 4, no. 4, 2024, doi: 10.30865/klik.v4i4.1711.
F. Maulana and E. B. Setiawan, “Performance of Deep Feed-Forward Neural Network Algorithm Based on Content-Based Filtering Approach,” INTENSIF: Jurnal Ilmiah Penelitian dan Penerapan Teknologi Sistem Informasi, vol. 8, no. 2, pp. 278–294, Aug. 2024, doi: 10.29407/intensif.v8i2.22904.
DOI: http://dx.doi.org/10.22441/incomtech.v15i2.31261

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Publisher Address:
Magister Teknik Elektro, Universitas Mercu Buana
Jl. Meruya Selatan 1, Jakarta 11650
Phone (021) 31935454/ 31934474
Fax (021) 31934474
Email: [email protected]
Website of Master Program in Electrical Engineering
http://mte.pasca.mercubuana.ac.id
pISSN: 2085-4811
eISSN: 2579-6089
Jurnal URL: http://publikasi.mercubuana.ac.id/index.php/Incomtech
Jurnal DOI: 10.22441/incomtech

Ciptaan disebarluaskan di bawah Lisensi Creative Commons Atribusi-NonKomersial 4.0 Internasional
The Journal is Indexed and Journal List Title by:












