Perbandingan Klasifikasi Single-Label dan Multi-Label Ulasan Pengguna Lapangan Futsal di Semarang Menggunakan SVM

Achrijal Shohib Arya Syifa, Khotibul Umam, Maya Rini Handayani, Siti Nur Aini

Abstract


Futsal merupakan cabang olahraga yang semakin populer di seluruh Indonesia, termasuk di Semarang. Penelitian ini bertujuan untuk melakukan klasifikasi sentimen ulasan pengguna mengenai lapangan futsal di Kota Semarang menggunakan metode Support Vector Machine. Data penelitian diperoleh melalui scraping ulasan Google Maps dengan ekstensi Chrome “Instant Data Scraper” dan terdiri dari 1.189 ulasan. Proses penelitian mencakup pengumpulan data, Cleaning dan pre-processing (normalisasi teks, modifikasi data, tokenisasi, stop word filtering, stemming), pelabelan (single label dan multi label), pembagian data (80% pelatihan dan 20% pengujian), pemodelan menggunakan SVM (single label dengan GridSearchCV dan multi label dengan One-vs-Rest Classifier), serta evaluasi model dengan metrik presisi, recall, dan F1-Score. Hasil menunjukkan pemodelan Support Vector Machine single-label mencapai presisi 0,84, recall 0,73, dan F1-Score 0,78. Sementara pemodelan Support Vector Machine multi-label mencapai presisi 0,96, recall 0,88, dan F1-Score 0.92. Dari ulasan yang dinalisis, sebaran data pada single-label maupun multi-label menunjukan dominasi ulasan kategori Fasilitas, menegaskan bahwa Fasilitas merupakan kategori yang paling sering dikomentari oleh pengguna. Temuan ini tidak hanya memberikan wawasan praktis bagi pengelola lapangan futsal, tetapi juga berkontribusi pada pengembangan metode klasifikasi ulasan berbasis machine learning dalam domain analisis opini, khususnya dalam membandingkan performa pendekatan single-label dan multi-label pada data multi-kategori di bidang teknologi informasi.

Keywords


Klasifikasi Multi-Label; Single-Label; Ulasan Pengguna; Lapangan Futsal; Support Vector Machine

Full Text:

PDF

References


A. N. Putra and S. Soegiyanto, “Manajemen Pembinaan Prestasi Futsal Kota Semarang dalam Persiapan Menghadapi PORPROV Jawa Tengah Tahun 2023,” Jurnal Sains Keolahragaan dan Kesehatan, vol. 8, no. 2, pp. 161–176, Mar. 2024, doi: 10.5614/jskk.2023.8.2.6.

J. Ipmawati, S. Saifulloh, and K. Kusnawi, “Analisis Sentimen Tempat Wisata Berdasarkan Ulasan pada Google Maps Menggunakan Algoritma Support Vector Machine,” MALCOM: Indonesian Journal of Machine Learning and Computer Science, vol. 4, no. 1, pp. 247–256, Jan. 2024, doi: 10.57152/malcom.v4i1.1066.

P. M. Aryanto and R. Mardhiyyah, “Analisis Sentimen Terhadap Review Google Maps Jogja City Mall Menggunakan Algoritma Support Vector Machine,” 2024, doi: 10.47065/josyc.v6i1.6049.

S. M. Liu and J.-H. Chen, “A multi-label classification based approach for sentiment classification,” Expert Syst Appl, vol. 42, no. 3, pp. 1083–1093, Feb. 2015, doi: 10.1016/j.eswa.2014.08.036.

M. Birjali, M. Kasri, and A. Beni-Hssane, “A comprehensive survey on sentiment analysis: Approaches, challenges and trends,” Knowl Based Syst, vol. 226, p. 107134, Aug. 2021, doi: 10.1016/j.knosys.2021.107134.

J. Hartmann, M. Heitmann, C. Siebert, and C. Schamp, “More than a Feeling: Accuracy and Application of Sentiment Analysis,” International Journal of Research in Marketing, vol. 40, no. 1, pp. 75–87, Mar. 2023, doi: 10.1016/j.ijresmar.2022.05.005.

A. M. S. Shaik Afzal, “Optimized Support Vector Machine Model for Visual Sentiment Analysis,” in 2021 3rd International Conference on Signal Processing and Communication (ICPSC), IEEE, May 2021, pp. 171–175. doi: 10.1109/ICSPC51351.2021.9451669.

B. Irena and Erwin Budi Setiawan, “Fake News (Hoax) Identification on Social Media Twitter using Decision Tree C4.5 Method,” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi),

vol. 4, no. 4, pp. 711–716, Aug. 2020, doi: 10.29207/resti.v4i4.2125.

R. Friedman, “Tokenization in the Theory of Knowledge,” Encyclopedia, vol. 3, no. 1, pp. 380–386, Mar. 2023, doi: 10.3390/encyclopedia3010024.

N. Umar and M. Adnan Nur, “Application of Naïve Bayes Algorithm Variations On Indonesian General Analysis Dataset for Sentiment Analysis,” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 6, no. 4, pp. 585–590, Aug. 2022, doi: 10.29207/resti.v6i4.4179.

M. W. Sardjono, M. Cahyanti, M. Mujahidin, and R. Arianty, “PENDETEKSI KESAMAAN KATA UNTUK JUDUL PENULISAN BERBAHASA INDONESIA MENGGUNAKAN ALGORITMA STEMMING NAZIEF-ADRIANI,” Sebatik, vol. 22, no. 2, pp. 138–146, Dec. 2018, doi: 10.46984/sebatik.v22i2.320.

B. Siswanto and Y. Dani, “Sentiment Analysis about Oximeter as Covid-19 Detection Tools on Twitter Using Sastrawi Library,” in 2021 8th International Conference on Information Technology, Computer and Electrical Engineering (ICITACEE), IEEE, Sep. 2021, pp. 161–164. doi: 10.1109/ICITACEE53184.2021.9617216.

Z. Rais, F. T. T. Hakiki, and R. Aprianti, “Sentiment Analysis of Peduli Lindungi Application Using the Naive Bayes Method,” SAINSMAT: Journal of Applied Sciences, Mathematics, and Its Education, vol. 11, no. 1, pp. 23–29, Mar. 2022, doi: 10.35877/sainsmat794.

N. Widaad and D. Anggraini, “SENTIMENT ANALYSIS OF CHATGPT APP USER REVIEWS USING SVM AND CNN METHODS,” Jurnal Teknik Informatika (JUTIF), vol. 5, no. 6, pp. 1687–1700, 2024, doi: 10.52436/1.jutif.2024.5.6.4010.

N. A. Sajid et al., “Single vs. Multi-Label: The Issues, Challenges and Insights of Contemporary Classification Schemes,” Jun. 01, 2023, MDPI. doi: 10.3390/app13116804.

K. Alemerien, S. Alsarayreh, and E. Altarawneh, “Diagnosing Cardiovascular Diseases using Optimized Machine Learning Algorithms with GridSearchCV,” Journal of Applied Data Sciences, vol. 5, no. 4, pp. 1539–1552, Dec. 2024, doi: 10.47738/jads.v5i4.280.

J. Xu, “An extended one-versus-rest support vector machine for multi-label classification,” Neurocomputing, vol. 74, no. 17, pp. 3114–3124, Oct. 2011, doi: 10.1016/j.neucom.2011.04.024.




DOI: http://dx.doi.org/10.22441/incomtech.v15i2.33905

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Publisher Address:
Magister Teknik Elektro, Universitas Mercu Buana
Jl. Meruya Selatan 1, Jakarta 11650
Phone (021) 31935454/ 31934474
Fax (021) 31934474
Email: [email protected]
Website of Master Program in Electrical Engineering
http://mte.pasca.mercubuana.ac.id

pISSN: 2085-4811
eISSN: 2579-6089
Jurnal URL: http://publikasi.mercubuana.ac.id/index.php/Incomtech
Jurnal DOI: 10.22441/incomtech

Lisensi Creative Commons
Ciptaan disebarluaskan di bawah Lisensi Creative Commons Atribusi-NonKomersial 4.0 Internasional

.

Web Analytics Made Easy - StatCounter
View My Stats

The Journal is Indexed and Journal List Title by: