Implementation Of DBSCAN Clustering and Random Forest Algorithm for Mapping and Predicting Shooting Incidents in New York

Azka Niaji Rangkuti, Samoedra Cakra Arifin, Muhammad Ramadansyah Kurnia Putra

Abstract


Shooting incidents in crowded, heavily populated areas of cities cause serious threats to public safety and social security. New York State, which includes large metropolitan areas and suburban regions, experiences complex spatial and temporal crime patterns that are difficult to identify using traditional crime analysis methods that rely only on descriptive statistics and manual hot spot identification. This study proposes a data-driven quantitative approach to mapping and predicting shooting incidents by integrating spatial clustering and machine learning techniques. Density-based clustering methods are applied to the geographic coordinates of shooting incidents to identify areas with high incident concentrations while filtering out isolated events as noise. The resulting spatial clusters are then interpreted as hotspot locations and used as reference labels for a supervised classification model. A Random Forest algorithm is then used to predict hotspot and non-hotspot locations using spatial and temporal features, including geographic position and time of occurrence. The model is evaluated using standard classification performance measures, including accuracy, precision, recall, F1 score, and confusion matrix analysis.

Keywords


Crime Mapping; Machine Learning; New York; Spatial Clustering

Full Text:

PDF

References


A. Y. Permana, H. N. Fazri, M. F. Nur Athoilah, M. Robi, and R. Firmansyah, “Penerapan data mining dalam analisis prediksi kanker paru menggunakan algoritma Random Forest,” Jurnal Ilmiah Teknik Informatika dan Komunikasi, vol. 3, no. 2, pp. 27–41, 2023.

M. Samantri and Afiyati, “Perbandingan algoritma Support Vector Machine dan Random Forest untuk analisis sentimen terhadap kebijakan pemerintah Indonesia terkait kenaikan harga BBM tahun 2022,” Jurnal JTIK (Jurnal Teknologi Informasi dan Komunikasi), vol. 8, no. 1, pp. 1–9, 2024.

A. Salsabila and L. Iswari, “Identifikasi pengelompokan titik penjemputan dan titik pengantaran perjalanan taksi menggunakan algoritma DBSCAN,” EDUSAINTEK: Jurnal Pendidikan, Sains dan Teknologi, vol. 11, no. 2, pp. 739–755, 2024.

Y. Ruan, W. Liu, T. Wang, J. Chen, X. Zhou, and Y. Sun, “Dominant partitioning of discontinuities of rock masses based on DBSCAN algorithm,” Applied Sciences, vol. 13, no. 15, p. 8917, 2023.

L. Mochurad, A. Sydor, and O. Ratinskiy, “A fast parallelized DBSCAN algorithm based on OpenMP for detection of criminals on streaming services,” Frontiers in Big Data, vol. 6, Article 1292923, 2023.

A. Fauzan, A. Novianti, R. R. M. A. Ramadhani, and M. A. S. Adhiwibawa, “Analysis of hotels spatial clustering in Bali: Density-Based Spatial Clustering of Application Noise (DBSCAN) algorithm approach,” EKSakta: Journal of Sciences and Data Analysis, vol. 3, no. 1, pp. 25–38, 2022.

J. Xu, Y. Zhang, X. Li, and D. Liu, “Bank customer segmentation and marketing strategies based on improved DBSCAN algorithm,” Applied Sciences, vol. 15, no. 6, p. 3138, 2025.

M. F. Fadhillah, A. L. A. Suyoso, and I. Puspitasari, “Perbandingan algoritma DBSCAN dan K-MEANS dalam segmentasi pelanggan pengguna transportasi publik Transjakarta menggunakan metode RFM,” MALCOM: Indonesian Journal of Machine Learning and Computer Science, vol. 5, no. 1, pp. 48–56, 2025.

Y. Zhang, X. Liu, and H. Chen, “Enhanced stratified sampling density-based spatial clustering of applications with noise (SS-DBSCAN) for high-dimensional data,” Journal of Algorithms & Computational Technology, 2025.

J. Weng, J. Zhang, and L. Lin, “h-DBSCAN: A simple fast DBSCAN algorithm for big data,” in Proceedings of the 38th International Conference on Machine Learning (ICML), vol. 157, pp. 10680–10689, PMLR, 2021.

Y. Zhao, X. Liu, and H. Wang, “An AIS data-driven approach to analyze the pattern of ship trajectories in ports using the DBSCAN algorithm,” Applied Sciences, vol. 11, no. 2, p. 799, 2021.

S. Nugroho et al., “Internet traffic classification model based on A-DBSCAN algorithm,” International Journal of Advances in Soft Computing and Its Applications, 2024.

A. Pratama et al., “Clustering of seismicity in the Indonesian region for the 2018–2020 period using the DBSCAN algorithm,” Jurnal Geofisika, 2021.

Z. Wang et al., “An improved adaptive radar signal sorting algorithm based on DBSCAN by a novel CVI,” IEEE Access, 2024.

R. Siregar, “Clustering negara berdasarkan skor pengendalian konsumsi tembakau menggunakan algoritma DBSCAN,” Jurnal Teknologi Informasi dan Komunikasi, 2022.

S. Lestari et al., “Penggunaan algoritma DBSCAN dalam pengelompokan kabupaten/kota di Sulawesi Tenggara berdasarkan indikator pendidikan,” SIMTEK: Jurnal Sistem Informasi dan Teknologi, 2022.

A. Kurniawan, “Penerapan algoritma DBSCAN untuk clustering penjualan supermarket,” ZETA: Jurnal Ilmu Komputer dan Sistem Informasi, 2023.

M. Rahman et al., “Analisis dan evaluasi algoritma DBSCAN pada tuberkulosis,” Jurnal Ilmiah Teknik Elektro dan Informatika Terapan, 2022.

A. Firmansyah et al., “Analysis of Sulawesi earthquake data from 2019 to 2023 using DBSCAN clustering,” RESTI: Rekayasa Sistem dan Teknologi Informasi, 2024.

H. Li et al., “WOA-DBSCAN: Application of whale optimization algorithm in DBSCAN parameter adaption,” IEEE Access, 2023.

R. Wijaya et al., “Komparasi algoritma hierarchical, K-means, dan DBSCAN pada analisis data penjualan melalui Facebook,” Jurnal Ilmiah Informatika, 2023.

A. Nugraha, “Klasterisasi data penjualan toko perak J-Maskus menggunakan algoritma HDBSCAN,” Jurnal Locus, 2024.

D. Prabowo et al., “Implementasi DBSCAN dalam clustering data minat mahasiswa setelah pandemi Covid-19,” Jurnal Konstelasi, 2023.

I. Maulana et al., “Analisis pemilihan parameter pada algoritma DBSCAN untuk pengelompokan titik api di Indonesia,” JPTI: Jurnal Penelitian Teknologi Informasi, 2022.

R. Putri et al., “Pengelompokan data pendistribusian listrik menggunakan algoritma Density-Based Spatial Clustering of Applications with Noise (DBSCAN),” MALCOM: Indonesian Journal of Machine Learning and Computer Science, 2023.

A. Hidayat et al., “Implementasi algoritma clustering DBSCAN terhadap pola navigasi pengguna di perpustakaan digital untuk mengungkap zona buta akses informasi dan optimalisasi antarmuka sistem,” SKANIKA, 2024.

R. Maulana et al., “Identifikasi hotspot kebakaran hutan Kalimantan Timur tahun 2023 menggunakan teknik spasial-temporal clustering ST-DBSCAN,” Jurnal Tematik, 2024.

A. H. Nugroho and R. A. Pratama, “Implementasi algoritma Random Forest untuk klasifikasi data,” Jurnal Tekno, 2022.

M. A. Putra, “Implementasi algoritma klasifikasi Random Forest pada data kesehatan,” Jurnal Ilmiah Sistem Informasi, 2020.

T. Kurniawan et al., “Analisis performa algoritma Random Forest dalam klasifikasi data,” Jurnal Teknologi Informasi, 2019.

A. Setiawan and D. Prabowo, “Penerapan algoritma Random Forest untuk prediksi dan klasifikasi data,” SISTEMASI: Jurnal Sistem Informasi, 2023.




DOI: http://dx.doi.org/10.22441/collabits.v3i1.37587

Refbacks

  • There are currently no refbacks.


Journal Collabits
Portal ISSNPrint ISSN: 3062-8601
Online ISSN: 3046-6709

Sekretariat
Fakultas Ilmu Komputer
Universitas Mercu Buana
Jl. Raya Meruya Selatan, Kembangan, Jakarta 11650
Tlp./Fax: +62215871335

http://publikasi.mercubuana.ac.id/index.php/collabits

e-mail: [email protected]

Creative Commons Licence
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.