COMPARATIVE ANALYSIS OF PUBLIC SENTIMENT TOWARDS SRI MULYANI AND PURBAYA AS FINANCE MINISTERS ON THE X PLATFORM USING THE INDOBERTWEET MODEL.

Muhammad Aryaka Zamzami, Siti Maesaroh, Dendy Jonas Managas

Abstract


The development of social media has positioned platform X (Twitter) as a primary source for expressing public opinion toward government figures and policies. This study aims to analyze public sentiment toward two Indonesian public figures, Sri Mulyani Indrawati and Purbaya Yudhi Sadewa, by utilizing the transformer-based IndoBERTweet model. The data were collected from January 1, 2025, to November 1, 2025. A total of 11,000 tweets related to Sri Mulyani were collected; however, only 2,500 tweets were used for data processing and model training, with a maximum limit of 1,000 tweets per month. Meanwhile, 650 tweets were obtained for Purbaya Yudhi Sadewa. This research employs a supervised learning approach with labeled data consisting of positive, negative, and neutral sentiment classes. Minimal preprocessing was applied, considering that IndoBERTweet is specifically designed to handle the characteristics of social media text. The model was trained for five epochs and evaluated using accuracy, precision, recall, and F1-score metrics. The results indicate that the IndoBERTweet model can classify sentiment effectively, particularly on the Sri Mulyani dataset, which contains a larger volume of data and achieves an accuracy of over 82%. In contrast, the model’s performance on the Purbaya Yudhi Sadewa dataset shows a lower accuracy of 71%, influenced by the limited amount of data. This study confirms that the quantity and distribution of data significantly affect the performance of transformer-based sentiment analysis models. Based on the sentiment classification results, public sentiment toward Sri Mulyani Indrawati tends to be dominated by negative and neutral sentiments, while sentiment toward Purbaya Yudhi Sadewa shows a distribution dominated by neutral and positive sentiments.

Keywords


Sentiment Analysis; IndoBERTweet; Social Media; Transformer; Public Opinion;

References


Juleha Juleha, Jusfira Yuniar, and Nur Riswandi Marsuki, “Peran Media Sosial Dalam Dinamika Opini Publik dan Partisipasi Politik Era Digital,” Concept: Journal of Social Humanities and Education, vol. 3, no. 1, pp. 38–45, Jan. 2024, doi: 10.55606/concept.v3i1.951.

F. Koto, J. H. Lau, and T. Baldwin, “IndoBERTweet: A Pretrained Language Model for Indonesian Twitter with Effective Domain-Specific Vocabulary Initialization,” in Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, Stroudsburg, PA, USA: Association for Computational Linguistics, Sep. 2021, pp. 10660–10668. doi: 10.18653/v1/2021.emnlp-main.833.

U. Khairani, V. Mutiawani, and H. Ahmadian, “Pengaruh Tahapan Preprocessing Terhadap Model Indobert Dan Indobertweet Untuk Mendeteksi Emosi Pada Komentar Akun Berita Instagram,” Jurnal Teknologi Informasi dan Ilmu Komputer, vol. 11, no. 4, pp. 887–894, Aug. 2024, doi: 10.25126/jtiik.1148315.

U. Khairani, “PERBANDINGAN MODEL INDOBERT DAN INDOBERTWEET UNTUK MENDETEKSI EMOSI KOMENTAR BERITA PADA MEDIA SOSIAL TUGAS AKHIR,” Jan. 2024. Accessed: Dec. 02, 2025. [Online]. Available: https://cdn.ar-raniry.ac.id/aps-test/teknologi_informasi/Pembimbing_di_USK_a.n_Hendri_Tugas_Akhir_Ulfia_Khairani_1908107010068.pdf

S. Khairunnisa, A. Adiwijaya, and S. Al Faraby, “Pengaruh Text Preprocessing terhadap Analisis Sentimen Komentar Masyarakat pada Media Sosial Twitter (Studi Kasus Pandemi COVID-19),” JURNAL MEDIA INFORMATIKA BUDIDARMA, vol. 5, no. 2, p. 406, Apr. 2021, doi: 10.30865/mib.v5i2.2835.

B. Eka Sarah Dewi, “SENTIMENT ANALYSIS MODEL ON ELECTRIC VEHICLES USING INDOBERTWEET AND INDOBERT ALGORITHM,” ANTIVIRUS: Jurnal Ilmiah Teknik Informatika, 2025, doi: https://doi.org/10.35457/w5r3g517.

J. C. Setiawan, K. M. Lhaksmana, and B. Bunyamin, “Sentiment Analysis of Indonesian TikTok Review Using LSTM and IndoBERTweet Algorithm,” JIPI (Jurnal Ilmiah Penelitian dan Pembelajaran Informatika), vol. 8, no. 3, pp. 774–780, Aug. 2023, doi: 10.29100/jipi.v8i3.3911.

K. Kadarsih and D. Pujianto, “APPLICATION OF TRANSFORMER MODEL AND WORD EMBEDDING IN SENTIMENT ANALISYS OF INDONESIAN E-COMMERCE APPLICATION REVIEW,” Journal of Computer Networks, Architecture and High Performance Computing, vol. 7, no. 3, pp. 720–732, Jul. 2025, doi: 10.47709/cnahpc.v7i3.6354.

N. M. Damayanti, “ANALISIS SENTIMEN PUBLIK PADA TAGAR #BTSCOMEBACK DI PLATFORM X MENGGUNAKAN INDOBERTWEET,” Jurnal Informatika dan Teknik Elektro Terapan, vol. 13, no. 3, Jul. 2025, doi: 10.23960/jitet.v13i3.7176.

J. F. Kusuma and A. Chowanda, “Indonesian Hate Speech Detection Using IndoBERTweet and BiLSTM on Twitter,” JOIV : International Journal on Informatics Visualization, vol. 7, no. 3, pp. 773–780, Sep. 2023, doi: 10.30630/joiv.7.3.1035.

Z. Alhaq, A. Mustopa, S. Mulyatun, and J. D. Santoso, “PENERAPAN METODE SUPPORT VECTOR MACHINE UNTUK ANALISIS SENTIMEN PENGGUNA TWITTER,” Journal of Information System Management (JOISM), vol. 3, no. 2, pp. 44–49, Jul. 2021, doi: 10.24076/joism.2021v3i2.558.




DOI: http://dx.doi.org/10.22441/collabits.v3i1.37962

Refbacks

  • There are currently no refbacks.


Journal Collabits
Portal ISSNPrint ISSN: 3062-8601
Online ISSN: 3046-6709

Sekretariat
Fakultas Ilmu Komputer
Universitas Mercu Buana
Jl. Raya Meruya Selatan, Kembangan, Jakarta 11650
Tlp./Fax: +62215871335

http://publikasi.mercubuana.ac.id/index.php/collabits

e-mail: [email protected]

Creative Commons Licence
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.