Penerapan Metode Naïve Bayes Untuk Mengetahui Kualitas Air Di Jakarta

Yunita Sartika Sari

Abstract


Water is a chemical compound that is needed for the survival of living things on earth. The largest area on planet earth is water which covers almost 71% of the area on earth. Water is also a very important substance on earth that is needed by all living things ranging from plants, animals and humans. It is necessary to monitor and treat the environment around the water source so that it can produce clean water quality. In this study, the Naïve Bayes algorithm is applied to determine water quality in the Jakarta area and produces an accuracy rate of water classification results in the DKI Jakarta area of 50.6%.


Keywords


nave bayes; quality; water; Jakarta

Full Text:

PDF

References


Alfa Saleh. 2015. Implementasi metode klasifikasi naive bayes dalam memprediksi besarnya penggunaan listrik rumah tangga. Creative Information Technology Journal, 2(3):207–217

Ali Masduqi, Eddy S Soedjono, Noor Endah, and Wahyono Hadi. 2009. Prediction of rural water supply systems sustainability using a mathematical model. Jurnal Purifikasi, 10(2):155–164

Alieja Muhammad Putrada, Maman Abdurohman, and Aji Gautama Putrada. 2018. Increasing smoke classifier accuracy using naive bayes method on internet of things. Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, 4(1):19–26

Budi Santosa. Data mining teknik pemanfaatan data untuk keperluan bisnis. Yogyakarta: Graha Ilmu, 978(979):756, 2007.

Burhan Alfironi Muktamar, Noor Akhmad Setiawan, and Teguh Bharata Adji. 2015. Analisis perbandingan tingkat akurasi algoritma naïve bayes classifier dengan correlated-naïve bayes classifier. SEMNASTEKNOMEDIA ONLINE, 3(1):2–1

Chongsheng Zhang, Changchang Liu, Xiangliang Zhang, and George Almpanidis. 2017. An up-to-date comparison of state-of-the-art classification algorithms. Expert Systems with Applications, 82:128–150

Daniela Xhemali, Chris J Hinde, and Roger G Stone. 2009. Naïve bayes vs. decision trees vs. neural networks in the classification of training web pages

Dewan Md Farid and Mohammad Zahidur Rahman. 2010. Anomaly network intrusion detection based on improved self adaptive bayesian algorithm. JCP, 5(1):23–31

Hartatik Hartatik, Andri Syafrianto, and Wiwi Widayani. 2018Perbandingan klasifikasi pecemaran air sungai dengan metode backpropagation dan naïve bayes. Data Manajemen dan Teknologi Informasi (DASI), 18(4):67–71

Hefni Effendi.2003. Telaah kualitas air, bagi pengelolaan sumber daya dan lingkungan perairan. Kanisius

Kusnawi. 2007. “Pengantar Solusi Data Mining”. STMIK AMIKOM, Yogyakarta.

Kustiyahningsih Yeni, dkk. 2013. “Sistem Pendukung Keputusan untuk Menentukan Jurusan pada Siswa SMA Menggunakan Metode KNN dan SMART”. Universitas Trunojoyo, Madura.

Kusumadewi, Sri. 2009. “Klasifikasi Status Gizi Menggunakan Naive Bayesian Classification”. Universitas Islam Indonesia, Yogyakarta.

Lestiana, Mila. 2015. “Perbandingan Algoritma Decision Tree (C4.5) dan Naive Bayes pada Data Mining untuk Identifikasi Tumbuh Kembang Anak Balita”. Universitas Muhammadiyah, Surakarta.

Peraturan Menteri Republik Indonesia nomor 492 tahun 2010 tentang Persyaratan Kualitas Air minum. Jakarta : Kementrian Kesehatan Republik Indonesia. Peraturan Pemerintah Republik Indonesia nomor 82 tahun 2001 tentang Pengelolaan Kualitas Air dan Pengendalian Pencemaran Air. Jakarta.

Mohamad Sakizadeh. 2015. Assessment the performance of classification methods in water quality studies, a case study in karaj river. Environmental monitoring and assessment, 187(9):573

Pablo Bermejo, José A Gámez, and José M Puerta. 2014. Speeding up in cremental wrapper feature subset selection with naïve bayes classifier. Knowledge-Based Systems

Riyadh Arridha. 2018. Design and implementation of iot-big data analytic for smart environment monitoring system.

Santoso. 2016. “Perbandingan Metode KNearest Neighbor(K-NN) dan Learning Vector Quantization (LVQ) untuk Permasalahan Klasifikasi Tingkat Kemiskinan”. Institut Teknologi Sepuluh November, Surabaya.

Situmorang, Manihar. 2017. “Kimia Lingkungan”. Depok: PT RajaGrafindo

Tri Vulandari, Retno. 2017. “Data Mining Teori dan Aplikasi Rapidminer”. Surakarta.

Saeful Bachrein. 2015. Pengembangan daerah aliran sungai (das) cikapundung: Diagnostik wilayah. Jurnal Bina Praja: Journal of Home Affairs Governance, 4(4):227–236

Sritrusta Sukaridhoto, Dadet Pramadihanto, Muhammad Alif, Andrie Yuwono, Nobuo Funabiki, et al. 2015. A design of radio- controlled submarine modification for river water quality monitoring. In 2015 International Seminar on Intelligent Technology and Its Applications (ISITIA), pages 75–80. IEEE

Sritrusta Sukaridhoto, Rahardhita Widyatra Sudibyo, Widi Sarinastiti, Rizky Dharmawan, Atit Sasono, Ahmad Andika Saputra, and Shiori Sasaki. 2016. Design and development of a portable low-cost cots-based water quality monitoring system. In 2016 International Seminar on Intelligent Technology and Its Applications (ISITIA), pages 635–640. IEEE

Shumei Wang, Zhaoji Zhang, Zhilong Ye, Xiaojun Wang, Xiangyu Lin, and Shaohua Chen. 2013. Application of environmental internet of things on water quality management of urban scenic river. International Journal of Sustainable Development & World Ecology, 20(3):216–222

Xindong Wu and Vipin Kumar. 2009. The top ten algorithms in data mining. CRC press




DOI: http://dx.doi.org/10.22441/fifo.2021.v13i2.010

Refbacks

  • There are currently no refbacks.


Jurnal Ilmiah FIFO
Portal ISSNPrint ISSN: 2085-4315
Online ISSN: 2502-8332

Sekretariat
Fakultas Ilmu Komputer
Universitas Mercu Buana
Jl. Raya Meruya Selatan, Kembangan, Jakarta 11650
Tlp./Fax: +62215871335

http://publikasi.mercubuana.ac.id/index.php/fifo

e-mail:[email protected]

Creative Commons Licence
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Web
Analytics Made Easy - StatCounter
View My Stats

 

width= width=

langkah 4d

gdtoto

NAGITABET