Enhancing Liver Disease Classification Using Support Vector Machine with IQR-Based Outlier Handling

Teotino Gomes Soares, Mursalim Tonggiroh, Moh. Erkamim, Erni Widarti

Abstract


Liver disease is a significant health issue that requires early and accurate diagnosis to prevent serious complications. In this study, we propose an outlier filtering approach using the Interquartile Range (IQR) to enhance the performance of the Support Vector Machine (SVM) algorithm in liver disease classification. A publicly available liver dataset consisting of 1,700 patient records with various clinical attributes was used, and the IQR method was applied to detect and remove extreme values before model training. The SVM model employed the Radial Basis Function (RBF) kernel to capture nonlinear relationships in the data. The classifier was evaluated under two conditions: without and with IQR-based outlier removal. Performance metrics including accuracy, precision, recall, F1-score, and ROC-AUC were used to assess the model. The experimental results showed that the IQR-based preprocessing improved model performance, with the accuracy increasing from 84.41% to 84.74% and the ROC-AUC score rising from 92.08% to 93.28%. Notably, the recall for the negative class improved from 84.31% to 89.76%, indicating enhanced detection of healthy patients. These findings demonstrate that outlier handling using IQR can contribute to more stable and accurate classification outcomes, especially for models that are sensitive to data irregularities such as SVM.

Keywords


Support Vector Machine; IQR; Outlier Filtering; Liver Disease Classification; Machine Learning

Full Text:

PDF

References


H. Devarbhavi, S. K. Asrani, J. P. Arab, Y. A. Nartey, E. Pose, and P. S. Kamath, “Global burden of liver disease: 2023 update,” J. Hepatol., vol. 79, no. 2, pp. 516–537, 2023, doi: https://doi.org/10.1016/j.jhep.2023.03.017.

Z. M. Younossi, G. Wong, Q. M. Anstee, and L. Henry, “The Global Burden of Liver Disease,” Clin. Gastroenterol. Hepatol., vol. 21, no. 8, pp. 1978–1991, 2023, doi: https://doi.org/10.1016/j.cgh.2023.04.015.

P. Ginès et al., “Population screening for liver fibrosis: Toward early diagnosis and intervention for chronic liver diseases,” Hepatology, vol. 75, no. 1, pp. 219–228, 2022, doi: 10.1002/hep.32163.

M. Ahsan, A. Khan, K. R. Khan, B. B. Sinha, and A. Sharma, “Advancements in medical diagnosis and treatment through machine learning: A review,” Expert Syst., vol. 41, no. 3, p. e13499, Mar. 2024, doi: https://doi.org/10.1111/exsy.13499.

N. Rane, S. P. Choudhary, and J. Rane, “Ensemble deep learning and machine learning: applications, opportunities, challenges, and future directions,” Stud. Med. Heal. Sci., vol. 1, no. 2, pp. 18–41, 2024, doi: 10.48185/smhs.v1i2.1225.

G. H. Simatupang and E. S. Ompusunggu, “Application of Support Vector Machine Method to Predict Heart Disease,” JUSIKOM PRIMA (Jurnal Sist. Inf. dan Ilmu Komput. Prima), vol. 8, no. 1, pp. 318–329, 2024.

A. K. Wardhani, E. Nugraha, and Q. Ulfiana, “Optimization of the Decision Tree Method using Pruning on Liver Disease Classification,” J. Appl. Informatics Comput., vol. 6, no. 2, pp. 136–140, 2022, doi: 10.30871/jaic.v6i2.4350.

I. N. Abrar, A. Abdullah, and S. Sucipto, “Liver Disease Classification Using the Elbow Method to Determine Optimal K in the K-Nearest Neighbor (K-NN) Algorithm,” J. Sisfokom (Sistem Inf. dan Komputer), vol. 12, no. 2, pp. 218–228, 2023, doi: 10.32736/sisfokom.v12i2.1643.

Fahmudur Rahman, Denesh Das, Anhar Sami, Priya Podder, and Daniel Lucky Michael, “Liver cirrhosis prediction using logistic regression, naïve bayes and KNN,” Int. J. Sci. Res. Arch., vol. 12, no. 1, pp. 2411–2420, 2024, doi: 10.30574/ijsra.2024.12.1.1030.

Ö. Bezek Güre, “Classification of Liver Disorders Diagnosis using Naïve Bayes Method,” Bitlis Eren Üniversitesi Fen Bilim. Derg., vol. 13, no. 1, pp. 153–160, 2024, doi: 10.17798/bitlisfen.1361016.

R. R. Asaad, “Support vector machine classification learning algorithm for diabetes prediction,” Int. Res. J. Sci., vol. 2, no. 2, pp. 26–34, 2022.

H. Luo and S. G. Paal, “A novel outlier-insensitive local support vector machine for robust data-driven forecasting in engineering,” Eng. Comput., vol. 39, no. 5, pp. 3671–3689, 2023, doi: 10.1007/s00366-022-01781-9.

V. Magar, D. Ruikar, S. Bhoite, and R. Mente, “Innovative Inter Quartile Range-based Outlier Detection and Removal Technique for Teaching Staff Performance Feedback Analysis,” J. Eng. Educ. Transform., vol. 37, no. 3, pp. 176–184, 2024, doi: 10.16920/jeet/2024/v37i3/24013.

M. Baldomero-Naranjo, L. I. Martínez-Merino, and A. M. Rodríguez-Chía, “A robust SVM-based approach with feature selection and outliers detection for classification problems,” Expert Syst. Appl., vol. 178, p. 115017, 2021, doi: https://doi.org/10.1016/j.eswa.2021.115017.

R. Rusliyawati, K. Karnadi, A. M. Tanniewa, A. C. Widyawati, Y. Jusman, and R. I. Borman, “Detection of Pepper Leaf Diseases Through Image Analysis Using Radial Basis Function Neural Networks,” in BIO Web of Conferences, 2024, pp. 1–10. doi: 10.1051/bioconf/202414401005.

R. El Kharoua, “Predict Liver Disease: 1700 Records Dataset,” Kaggle. [Online]. Available: https://www.kaggle.com/datasets/rabieelkharoua/predict-liver-disease-1700-records-dataset

C. S. K. Dash, A. K. Behera, S. Dehuri, and A. Ghosh, “An outliers detection and elimination framework in classification task of data mining,” Decis. Anal. J., vol. 6, p. 100164, 2023, doi: https://doi.org/10.1016/j.dajour.2023.100164.

D. Dallah and H. Sulieman, “Outlier Detection Using the Range Distribution BT - Advances in Mathematical Modeling and Scientific Computing,” in Advances in Mathematical Modeling and Scientific Computing, F. Kamalov, R. Sivaraj, and H.-H. Leung, Eds., Cham: Springer International Publishing, 2024, pp. 687–697.

A. Khan, A. Khan, M. M. Khan, K. Farid, M. M. Alam, and M. B. M. Su’ud, “Cardiovascular and Diabetes Diseases Classification Using Ensemble Stacking Classifiers with SVM as a Meta Classifier,” Diagnostics, vol. 12, no. 11, 2022, doi: 10.3390/diagnostics12112595.

P. Borah and D. Gupta, “Robust twin bounded support vector machines for outliers and imbalanced data,” Appl. Intell., vol. 51, no. 8, pp. 5314–5343, 2021, doi: 10.1007/s10489-020-01847-5.

X. Ding, J. Liu, F. Yang, and J. Cao, “Random radial basis function kernel-based support vector machine,” J. Franklin Inst., vol. 358, no. 18, pp. 10121–10140, 2021, doi: https://doi.org/10.1016/j.jfranklin.2021.10.005.

A. P. Gopi, R. N. S. Jyothi, V. L. Narayana, and K. S. Sandeep, “Classification of tweets data based on polarity using improved RBF kernel of SVM,” Int. J. Inf. Technol., vol. 15, no. 2, pp. 965–980, 2023, doi: 10.1007/s41870-019-00409-4.

Parjito, I. Ahmad, R. I. Borman, A. D. Alexander, and Y. Jusman, “Combining Extreme Learning Machine and Linear Discriminant Analysis for Optimized Apple Leaf Disease Classification,” in International Conference on Electronic and Electrical Engineering and Intelligent System (ICE3IS), IEEE, 2024, pp. 138–143. doi: 10.1109/ICE3IS62977.2024.10775844.

R. I. Borman, F. Rossi, Y. Jusman, A. A. A. Rahni, S. D. Putra, and A. Herdiansah, “Identification of Herbal Leaf Types Based on Their Image Using First Order Feature Extraction and Multiclass SVM Algorithm,” in International Conference on Electronic and Electrical Engineering and Intelligent System (ICE3IS), IEEE, 2021, pp. 12–17.

G. Góra and A. Skowron, “On kNN Class Weights for Optimising G-Mean and F1-Score BT - Rough Sets,” in International Joint Conference on Rough Sets, A. Campagner, O. Urs Lenz, S. Xia, D. Ślęzak, J. Wąs, and J. Yao, Eds., Cham: Springer Nature Switzerland, 2023, pp. 414–430.

Y. Liu, Y. Li, and D. Xie, “Implications of imbalanced datasets for empirical ROC-AUC estimation in binary classification tasks,” J. Stat. Comput. Simul., vol. 94, no. 1, pp. 183–203, Jan. 2024, doi: 10.1080/00949655.2023.2238235.




DOI: http://dx.doi.org/10.22441/fifo.2025.v17i1.010

Refbacks

  • There are currently no refbacks.



Jurnal Ilmiah FIFO

Fakultas Ilmu Komputer Universitas Mercu Buana
Jl. Raya Meruya Selatan, Kembangan, Jakarta 11650
Tlp./Fax: +62215871335
p-ISSN: 2085-4315
e-ISSN: 2502-8332
http://publikasi.mercubuana.ac.id/index.php/fifo

e-mail:[email protected]

Creative Commons Licence
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Web Analytics Made Easy - StatCounter

View My Stats