Penerapan Content-Boosted Collaborative Filtering untuk Meningkatkan Kemampuan Sistem Rekomendasi Penyedia Jasa Acara Pernikahan

Rahman Indra Kesuma, Amirul Iqbal

Abstract


Abstract

The changes in lifestyle of the global society in the era of digital world development have made the smartphone technology penetration to rise continually. This condition can increase business opportunities, especially e-commerce activities that utilize technology and the internet in terms of promotions and transactions. The efficiency and effectiveness is an interesting focus that is discussed in this issue. For example, in services or products searching for a wedding where many customers still feel difficult and need a long time to find the desired things. The existence of a recommendation system also has not been able to help, especially for users who are newly registered to the system. This is because most of them will provide recommendations based on a history of user activity. Therefore, this study applies the content-boosted collaborative filtering (CBCF) method to improve the ability of the recommendation system in providing recommendations for weddings, especially for a new user. The obtained results are then compared with two commonly used methods, content-based recommendations (CB) and collaborative filtering (CF). Based on the experimental results, it can be concluded that CBCF can maintain the quality of good recommendations for long registered users with an accuracy of 84% and also can provide recommendations for new users with an accuracy of 54% which is cannot be solved by CB or CF methods.

Key Word: digital businesses, wedding vendors/organizers, recommendation system, content-boosted collaborative filtering

 

 

Abstrak

Perubahan pola kehidupan masyarakat global pada era perkembangan dunia digital membuat penetrasi dari teknologi telepon pintar terus menaik. Kondisi ini dapat meningkatkan kesempatan bisnis khususnya kegiatan jual beli yang memanfaatkan teknologi dan internet dalam hal promosi dan transaksi. Efisiensi dan efektifitas proses menjadi fokus yang terus menarik dibahas dalam hal ini. Sebagai contoh, pada pencarian layanan atau produk untuk pernikahan yang mana banyak pelanggan masih merasakan kesulitan dan membutuhkan waktu yang lama untuk mencari sesuatu yang diinginkannya. Keberadaan sistem rekomendasi juga belum bisa membantu terlebih bagi pengguna yang baru terdaftar pada sistem. Hal ini dikarenakan kebanyakan sistem akan memberikan rekomendasi berdasarkan rekam jejak aktifitas pengguna. Maka itu, pada penelitian ini diusulkan penerapan metode content-boosted collaborative filtering (CBCF) untuk meningkatkan kemampuan sistem rekomendasi dalam pemberian rekomendasi untuk acara pernikahan, khususnya pada pengguna baru. Hasil yang diperoleh selanjutnya dibandingkan dengan dua metode yang umum digunakan yaitu content based recommendation (CB) dan collaborative filtering (CF). Berdasarkan hasil penelitian yang diperoleh, dapat disimpulkan bahwa CBCF dapat mempertahankan kualitas pemberian rekomendasi yang baik untuk pengguna lama dengan akurasi sebesar 84% serta mampu memberikan rekomendasi untuk pengguna baru dengan akurasi 54% yang mana kondisi ini tidak bisa diselesaikan oleh metode CB ataupun CF.

Kata Kunci: bisnis digital, penyedia jasa acara pernikahan, sistem rekomendasi, content-boosted collaborative filtering

 


Keywords


bisnis digital; penyedia jasa acara pernikahan; sistem rekomendasi; content-boosted collaborative filtering

Full Text:

PDF

References


H. K. Soemartono, "Potret Zaman Now Pengguna dan Perilaku Internet Indonesia!," Buletin APJII, pp. 1-7, April 2018.

Anonymous, The Mobile Economy 2018, London: The GSM Association, 2018.

S. Millward, "Indonesia Diproyeksi Lampaui 100 Juta Pengguna Smartphone di 2018," TECHINASIA, 23 December 2014. [Online]. Available: https://id.techinasia.com/jumlah-pengguna-smartphone-di-indonesia- 2018. [Accessed 3 March 2019].

S. M. Maulana, H. Susilo and Riyadi, "Implementasi e-commerce sebagai media penjualan online (studi kasus pada toko pastbrik kota malang)," Jurnal Administrasi Bisnis, vol. 29, no. 1, pp. 1-9, 2015.

S. Kemp, "Digital in 2018: World’s Internet Users Pass The 4 Billion Mark," WeAreSocial, 30 January 2018. [Online]. Available: https://wearesocial.com/blog/2018/01/global-digital-report-2018. [Accessed 6 March 2019].

D. M. Kristin and Y. Lisanti, "Wedding Organizer Order Management," ComTech: Computer, Mathematics and Engineering Applications, vol. 5, no. 2, pp. 839-850, 2014.

I. Najiyah and Suharyanto, "Sistem Informasi Wedding Planner Berbasis Web," Jurnal Ilmu Pengetahuan dan Teknologi Komputer, vol. 3, no. 1, pp. 79-86, 2017.

F. Ricci, L. Rokach and B. Shapira, "Introduction to Recommeder System Handbook," in Recommender System Handbook, New York, Springer Science+Business Media, 2011, pp. 1-29.

P. Melville, R. J. Mooney and R. Nagarajan, "Content-Boosted Collaborative Filtering for Improved Recommendations," in Eighteenth National Conference on Artificial Intelligence, Edmonton, 2002.

T. Badriyah, R. Fernando and I. Syarif, "Sistem Rekomendasi Content Based Filtering Menggunakan Algoritma Apriori," in Konferensi Nasional Sistem Informasi (KNSI), Pangkal Pinang, 2018.

L. E. Molina and Fernandez, Recommencation System for Netflix, Amsterdam: Vrije Universiteit Amsterdam, 2018.

J. L. Herlocker, J. A. Konstan, A. Borchers and J. Riedl, "An Algorithmic Framework for Performing Collaborative Filtering," in SIGIR ’99: Proceedings of the 22nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, Berkeley, 1999.

R. J. Mooney and L. Roy, "Content-Based Book Recommending Using Learning for Text Categorization," in SIGIR-99 Workshop on Recommender System: Algorithms and Evaluation, Berkeley, 1999.

V. Srividhya and R. Anitha, "Evaluating Preprocessing Techniques in Text Categorization," International Journal of Computer Science and Application, vol. 47, no. 11, pp. 49-51, 2010.

S. Bird, E. Klein and E. Loper, Natural Language Processing with Python, California: O’Reilly Media, Inc., 2009.

G. Shani and A. Gunawardana, "Evaluating Recommendation Systems," in Recommender Systems Handbook, Boston, Springer Science+Business Media, 2011, pp. 257-297.

D. M. W. Powers, "Evaluation: from Precision, Recall and F-Measure to ROC, Informedness, Markedness & Correlation," Journal of Machine Learning Technology, vol. 2, no. 1, pp. 37-63, 2011.




DOI: http://dx.doi.org/10.22441/fifo.2020.v12i1.009

Refbacks

  • There are currently no refbacks.


Jurnal Ilmiah FIFO
Portal ISSNPrint ISSN: 2085-4315
Online ISSN: 2502-8332

Sekretariat
Fakultas Ilmu Komputer
Universitas Mercu Buana
Jl. Raya Meruya Selatan, Kembangan, Jakarta 11650
Tlp./Fax: +62215871335

http://publikasi.mercubuana.ac.id/index.php/fifo

e-mail:[email protected]

Creative Commons Licence
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Web
Analytics Made Easy - StatCounter
View My Stats

 

width= width=