Machine Learning System untuk Mendeteksi Gerakan Tubuh Menggunakan Library Mediapipe

Irfan Nurdiansyah, Reni Utami, Muchamad Sandy

Abstract


Communication with people with hearing and speech disabilities is often challenging. Sign language is the primary tool that helps them convey thoughts and feelings, but it is often difficult for those who are not used to it to understand. This project aims to develop a machine learning model to recognize hand gestures in spelling fingers using American Sign Language (ASL). The model uses image data and Computer Vision techniques to train a deep learning algorithm that can recognize signals in real-time through a camera. The system utilizes deep neural networks that work through layers of nodes to process, classify, and predict cues accurately.


Keywords


Machine learning, Bahasa Isyarat, Mediapipe, ASL

Full Text:

PDF


DOI: http://dx.doi.org/10.22441/format.2025.v14.i1.008

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Format : Jurnal Ilmiah Teknik Informatika

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Format : Jurnal Ilmiah Teknik Informatika
Fakultas Ilmu Komputer Universitas Mercu Buana
Jl. Raya Meruya Selatan, Kembangan, Jakarta 11650
Tlp./Fax: +62215840816
http://publikasi.mercubuana.ac.id/index.php/format

p-ISSN: 2089-5615
e-ISSN: 2722-7162

 Lisensi Creative Commons
Ciptaan disebarluaskan di bawah Lisensi Creative Commons Atribusi-NonKomersial 4.0 Internasional.

View My Stats