Foraging Bee Optimization Algorithm

Ebun Phillip Fasina, Babatunde Alade Sawyerr, Shuaibu Babangida Alkassim


Honey bee colonies depend on pollen and nectar from flowers for their feed. The act of searching for this flowers by the bees is called foraging. The foraging behaviour of bees depends on the profitability of nectar and pollen sources as well as the needs of the colony. This behaviour is modeled into an algorithm called Foraging Bee Optimization Algorithm (FBA). After initialization, the algorithm loops through three phases based on bees’ nature foraging behaviour called the 3W: Waggle, Work, and Withdraw. A large number of flowers are initialized randomly in the problem space. During the waggle phase, bees are recruited to patch with profitable nectar sources. In the work phase, new flowers are discovered and memorized by bees. In the withdraw phase bees eliminate unprofitable flowers and recalibrate for recruitment. The proposed FBA is tested on three unimodal and twelve multimodal benchmark. The result is compared with two state-of-the-art natured-inspired optimization algorithm.

Full Text:



Abbass, H. A. (2001). MBO: Marriage in Honey Bees Optimization-A Haplometrosis Polygynous Swarming Approach. Proceedings of the 2001 IEEE Congress on Evolutionary Computation (IEEE Cat. No. 01TH8546) Vol. 1., 207-214.

Alizadehsani, R., Roshanzamir, M., Izadi, N. H., Gravina, R., Kabir, H. D., Nahavandi, D., . . . Fortino, G. (2023). Swarm Intelligence in Internet of Medical Things: A Review. Sensors, 23(3), 1466. doi:

Altshuler, Y. (2023). Recent Developments in the Theory and Applicability of Swarm Search. Entropy, 25(5).

Aslan, S., Karaboga, D., & Badem, H. (2020). A New Artificial Bee Colony Algorithm employing Intelligent Forager Forwarding Strategies. Applied Soft Computing, 96.

Belgrade, U. (2015, September 16). Bee Colony Optimization. Retrieved September 16, 2015, from

Bolaji, A. L., Khader, A. T., Al-Betar, M. A., & Awadallah, M. A. (2013). Artificial Bee Colony Algorithm, Its Variants and Applications. A Survey, Journal of Theoretical and Applied Information Technology, 47(2), 434-459.

Chen, X., Tianfield, H., & Du, W. (2021). Bee-foraging Learning Particle Swarm Optimization. Applied Soft Computing, 102. doi:10.1016/j.asoc.2021.107134

Cruz, D. P., Maia, R. D., & de Castro, L. N. (2021). A Framework for the Analysis and Synthesis of Swarm Intelligence Algorithms. Journal of Experimental & Theoretical Artificial Intelligence, 33, 659-681.

Curkovic, P., & Jerbic, B. (2007). Honey-bees optimization algorithm applied to path planning problem. International journal of simulation modelling, 6(3), 154-165.

Dorigo, M., Colorni, A., & Maniezzo, V. (1991). Positive feedback as a search strategy. Technical Report 91-016, Politecnico di Milano, Dipartimento di Elettronica, Milan, Italy.

Eberhart, R. C., Shi, Y., & Kennedy, J. (2001). Swarm intelligence. Elsevier.

Engelbrecht, A. P. (2007). Computational intelligence: an introduction (2nd ed.). Pretoria, South Africa: John Wiley & Sons.

Fakhermand, S. M., & Derakhshani, A. (2023). Design Optimization of Soil-Metal Composite Arch Bridges: Recent Swarm Intelligence Applications. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 47(1), 373-387.

Gao, W., Liu, S., & Huang, L. (2012). A global best artificial bee colony algorithm for global optimization. Journal of Computational and Applied Mathematics, 236(11), 2741-2753.

Haddad, O. B., Afshar, A., & Mariño, M. A. (2006). Honey-Bees Mating Optimization (HBMO) Algorithm. A New Heuristic Approach for Water Resources Optimization. Water Resources Management, 20(5), 661-680.

Holland, J. H. (1975). Adaption in Natural and Artificial System. . MIT Press.

Janaki, M., & Geethalakshmi, S. N. (2022). A Review of Swarm Intelligence-Based Feature Selection Methods and Its Application. Soft Computing for Security Applications: Proceedings of ICSCS 2022, 435-447.

Karaboga, D. (2005). An Idea Based on Honey Bee Swarm for Numerical Optimization. Technical report-tr06, Erciyes University, engineering faculty, computer engineering department., Kayseri, Turkiye.

Kaswan, K. S., Dhatterwal, J. S., & Kumar, A. (2023). Swarm Intelligence: An Approach from Natural to Artificial. John Wiley & Sons.

Kennedy J. and Eberhart, R. (1995). Particle swarm optimization. Proceedings of the IEEE International Conference on Neural Networks, 4, pp. 1942–1948.

Krishnanand , K. N., & Ghose, D. (2005). Detection of multiple source locations using a glowworm metaphor with applications to collective robotics. in Proceedings of the IEEE Swarm Intelligence Symposium (SIS ’05), (pp. 84–94). Pasadena, California.

Kumar, A., Chatterjee, J. M., Payal, M., & Rathore, P. S. (2022). Revolutionizing the Internet of Things with Swarm Intelligence. System Assurances, 403-436. doi:10.1016/B978-0-323-90240-3.00023-0

Li, X., & Yang, G. (2016). Artificial bee colony algorithm with memory. Applied Soft Computing, 41, 362-372.

Mathlouthi , I., & Bouamama, S. (2016). A family of honey-bee optimization algorithms for Max-CSPs. International Journal of Knowledge-based and Intelligent Engineering Systems, 19(4), 215-224.

Pan, X. (2016). Genetic-bee Colony Dual-population Self-adaptive Hybrid Algorithm Based on Information Entropy. Scientific Bulletin of National Mining University, 1(1), 116.

Pham, D. T., Ghanbarzadeh, A., Koç, E., Otri, S., Rahim, S., & Zaidi, M. (2005). The Bees Algorithm – A Novel Tool for Complex Optimization Problem. In D. T. Pham, E. E. Eldukhri, & A. J. Soroka (Ed.), Intelligent Production Machines and Systems (p. 454). Elsevier Science Ltd.

Sato, T., & Hagiwara, M. (1997). Bee System: Finding Solution by a Concentrated Search. IEEE International Conference on Computational Cybernetics and Simulation (pp. 3954-395). Orlando, FL, USA: IEEE.

Schumann, A. (. (2020). Swarm Intelligence: From Social Bacteria to Humans. CRC Press.

Selvaraj, S., & Choi, E. (2020). Survey of swarm intelligence algorithms. 3rd International Conference on Software Engineering and Information Management, (pp. 69-73).

Shahzad, M. M., Saeed, Z., Akhtar, A., Munawar, H., Yousaf, M. H., Baloach, N. K., & F, H. (2023). A Review of Swarm Robotics in a NutShell. Drones, 7(4), 269.

Solgi, R., & Loáiciga, H. A. (2021). Bee-Inspired Metaheuristics for Global Optimization: A Performance Comparison. Artificial Intelligence Review, 54(7), 4967-4996. doi:10.1007/s10462-021-10015-1

Storn, R., & Price, K. V. (1997). Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization, 11(4), 341–359.

Teodorovic, D., & Dell’orco, M. (2005). Bee Colony Optimization—A Cooperative Learning Approach to Complex Transportation Problems. Proceedings of the 16th Mini-EURO Conference on Advanced OR and AI Methods in Transportation, (pp. 51-60). Poznan. Retrieved September 13-16, 2005

Tzanetos, A., & Dounias, G. (2020). A Comprehensive Survey on the Applications of Swarm Intelligence and Bio-Inspired Evolutionary Strategies. In G. Tsihrintzis, & L. Jain, Machine Learning Paradigms. Learning and Analytics in Intelligent Systems (Vol. 18, pp. 337-378). Cham: Springer. doi:

Yang, C., Chen, J., & Tu, X. (2007). Algorithm of Fast Marriage in Honey Bees Optimization and Convergence Analysis. In Proceedings of the IEEE International Conference on Automation and Logistics (pp. 1794–1799). Jinan, China: ICAL.



  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

IJIEM - Indonesian Journal of Industrial Engineering & Management
Program Pascasarjana Magister Teknik Industri Universitas Mercu Buana
Kampus Menteng - Gedung Tedja Buana, Floor 4th  
Jl. Menteng Raya No. 29  Jakarta Pusat- Indonesia
Tlp.: +62 21 31935454 Fax: +62  21 31934474

Email:  [email protected]


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Web Analytics Made Easy - Statcounter View My Stats

The journal is indexed by: