Optimizing the Distribution and Allocation of COVID-19 Vaccines Using Mathematical Programming Approach: A Case Study in Indonesia

Alvin Muhammad 'Ainul Yaqin, Ghina Salsabila Rosyid, Abdul Alimul Karim, Mochamad Sulaiman, Fitriah Fadillah

Abstract


Effective distribution of COVID-19 vaccines is crucial for pandemic control. This study utilized a multi-product mixed-integer nonlinear programming (MINLP) model to optimize the distribution of five vaccine types across (AstraZeneca, Sinopharm, Moderna, Pfizer, and Sinovac). The population, segmented into five age groups (12-18 years, 19-30 years, 31-45 years, 46-59 years and over 60 years), accesses vaccines through 59 healthcare facilities in one of the large cities in Indonesia. With a budget of IDR 150 billion, the model procured five vaccine a total of 574,748 vaccine doses, distributed as follows: 112,954 of type 1, 115,733 of type 2, 115,649 of type 3, 112,171 of type 4, and 118,241 of type 5 vaccines. The model successfully optimized the distribution, achieving a delivery-to-demand ratio of 0.049, which reflects the proportion of vaccine demand met under various scenarios, particularly in scenario 4, which represents actual conditions. Decision-makers can further enhance vaccine allocation by adjusting the total budget; for instance, an additional IDR 10 billion would enable the distribution of 123,474 more doses, increasing the delivery-to-demand ratio to 0.056. This ratio of 0.056 was obtained by adjusting the total budget allocated for vaccine distribution in scenario 5, based on the results from AMPL and Gurobi software. A significant contribution of this study is the development of a MINLP model that ensures equitable distribution tailored to age-specific pandemic requirements. Validation using real-world data enhances the existing literature on vaccine distribution strategies. This study provides valuable insights for policymakers and managers aiming to optimize resource allocation and distribution strategies for COVID-19 vaccination programs, thereby improving overall pandemic management efficiency.

Keywords


Healthcare management; Vaccine supply chain; Vaccine distribution; COVID-19; Mathematical programming

Full Text:

PDF

References


Abbasi, B., Fadaki, M., Kokshagina, O., Saeed, N., & Chhetri, P. (2020). Modeling vaccine allocations in the COVID-19 pandemic: A case study in Australia. SSRN Electronic Journal, 1-34. https://doi.org/10.2139/SSRN.3744520

Abila, D. B., Dei-Tumi, S. D., Humura, F., & Aja, G. N. (2020). We need to start thinking about promoting the demand, uptake, and equitable distribution of COVID-19 vaccines now!. Public Health in Practice, 1, 100063. https://doi.org/10.1016/j.puhip.2020.100063

Alam, S. T., Ahmed, S., Ali, S. M., Sarker, S., Kabir, G., & Ul-Islam, A. (2021). Challenges to COVID-19 vaccine supply chain: Implications for sustainable development goals. International Journal of Production Economics, 239, 108193. https://doi.org/10.1016/J.IJPE.2021.108193

Alizadeh, M., Paydar, M. M., Hosseini, S. M., & Makui, A. (2021). Influenza vaccine supply chain network design during the COVID-19 pandemic considering dynamical demand. Scientia Iranica, 1-31. https://doi.org/10.24200/SCI.2021.58365.5694

Ariyarajah, A., Berry, I., Haldane, V., Loutet, M., Salamanca-Buentello, F., & Upshur, R. E. G. (2022). Identifying priority challenges and solutions for COVID-19 vaccine delivery in low- and middle-income countries: A modified Delphi study. PLOS Global Public Health, 2(9), e0000844. https://doi.org/10.1371/journal.pgph.0000844

Bertsimas, D., Digalakis, V., Jacquillat, A., Li, M. L., & Previero, A. (2022). Where to locate COVID-19 mass vaccination facilities? Naval Research Logistics, 69(2), 179–200. https://doi.org/10.1002/NAV.22007

Bluth, M. H., Apostolopoulos, V., Ksi, R., A˙ Zek., Kapłan, R., Gdowska, K., & Łebkowski, P. (2022). Vaccination schedule under conditions of limited vaccine production rate. Vaccines, 10(1), 116. https://doi.org/10.3390/VACCINES10010116

Bravo, F., Hu, J., & Long, E. (2022). Optimal COVID-19 vaccination facility location. SSRN Electronic Journal. 1-30. https://doi.org/10.2139/SSRN.4008669

Davahli, M. R., Karwowski, W., & Fiok, K. (2021). Optimizing COVID-19 vaccine distribution across the United States using deterministic and stochastic recurrent neural networks. PLoS ONE, 16. https://doi.org/10.1371/journal.pone.0253925

de Boeck, K., Decouttere, C., & Vandaele, N. (2019). Vaccine distribution chains in low- and middle-income countries: A literature review. Omega, 97, 102097. https://doi.org/10.1016/j.omega.2019.08.004

Deroo S, Pudalov N. J., & Fu LY. (2020). Planning for a COVID-19 vaccination program. JAMA, 323(24): 2458–2459. https://doi.org/10.1001/JAMA.2020.8711

East Kalimantan Provincial Department of Population, Women’s Empowerment, and Child Protection. (2017, February 1). Data Agregat Kependudukan. Retrieved December 1, 2022, from https://dkp3a.kaltimprov.go.id/e-infoduk/

Duijzer, L. E., van Jaarsveld, W., & Dekker, R. (2018). Literature review: The vaccine supply chain. European Journal of Operational Research, 268(1), 174–192. https://doi.org/10.1016/J.EJOR.2018.01.015

Enayati, S., & Özaltın, O. Y. (2020). Optimal influenza vaccine distribution with equity. European Journal of Operational Research, 283(2), 714–725. https://doi.org/10.1016/J.EJOR.2019.11.025

Georgiadis, G. P., & Georgiadis, M. C. (2021). Optimal planning of the COVID-19 vaccine supply chain. Vaccine, 39(37), 5302–5312. https://doi.org/10.1016/J.VACCINE.2021.07.068

Golan, M. S., Trump, B. D., Cegan, J. C., & Linkov, I. (2021). The vaccine supply chain: A call for resilience analytics to support COVID-19 vaccine production and distribution. Systemic Risk and Resilience: Risk, Systems and Decisions, 389–437. https://doi.org/10.1007/978-3-030-71587-8_22

Jahani, H., Chaleshtori, A. E., Khaksar, S. M. S., Aghaie, A., & Sheu, J.-B. (2022). COVID-19 vaccine distribution planning using a congested queuing system—A real case from Australia. Transportation Research Part E: Logistics and Transportation Review, 163, 102749. https://doi.org/10.1016/J.TRE.2022.102749

Kementerian Kesehatan Republik Indonesia. (2022). Profil Direktorat Jenderal Pencegahan dan Pengendalian Penyakit Tahun 2021. Kementerian Kesehatan Republik Indonesia. Accessed October 20, 2024, from https://p2p.kemkes.go.id

Kim, S., & Jung, E. (2019). Prioritization of vaccine strategy using an age-dependent mathematical model for 2009 A/H1N1 influenza in the Republic of Korea. Journal of Theoretical Biology, 479, 97–105. https://doi.org/10.1016/J.JTBI.2019.07.011

Leithäuser, N., Schneider, J., Johann, S., Krumke, S. O., Schmidt, E., Streicher, M., & Scholz, S. (2021). Quantifying COVID-19 vaccine location strategies for Germany. BMC Health Services Research, 21(1), 1–18. https://doi.org/10.1186/S12913-021-06587-X/FIGURES/12

Li, X., Pan, Y., Jiang, S., Huang, Q., Chen, Z., Zhang, M., & Zhang, Z. (2021). Locate vaccination stations considering travel distance, operational cost, and work schedule. Omega, 101. https://doi.org/10.1016/j.omega.2020.102236

Lim, J., Norman, B. A., & Rajgopal, J. (2019). Redesign of vaccine distribution networks. International Transactions in Operational Research, 29(1), 200–225. https://doi.org/10.1111/ITOR.12758

Ma, Q., Liu, Y.-Y., & Olshevsky, A. (2021). Optimal vaccine allocation for pandemic stabilization. arXiv. https://doi.org/10.48550/arxiv.2109.04612

Marie, J., Minoza, A., Bongolan, V. P., & Rayo, J. F. (2021). COVID-19 agent-based model with multi-objective optimization for vaccine distribution. arXiv. https://doi.org/10.48550/arxiv.2101.11400

Matrajt, L., Eaton, J., Leung, T., & Brown, E. R. (2020). Vaccine optimization for COVID-19: Who to vaccinate first? MedRxiv. https://doi.org/10.1101/2020.08.14.20175257

Ng, C. T., Cheng, T. C. E., Tsadikovich, D., Levner, E., Elalouf, A., & Hovav, S. (2018). A multi-criterion approach to optimal vaccination planning: Method and solution. Computers & Industrial Engineering, 126, 637–649. https://doi.org/10.1016/J.CIE.2018.10.018

Ocampo, L., & Yamagishi, K. (2020). Modeling the lockdown relaxation protocols of the Philippine government in response to the COVID-19 pandemic: An intuitionistic fuzzy DEMATEL analysis. Socio-Economic Planning Sciences, 72. https://doi.org/10.1016/J.SEPS.2020.100911

Rastegar, M., Tavana, M., Meraj, A., & Mina, H. (2021). An inventory-location optimization model for equitable influenza vaccine distribution in developing countries during the COVID-19 pandemic. Vaccine, 39(3), 495–504. https://doi.org/10.1016/J.VACCINE.2020.12.022

Shim, E. (2021). Optimal allocation of the limited COVID-19 vaccine supply in South Korea. Journal of Clinical Medicine, 10(4), 591. https://doi.org/10.3390/JCM10040591

Shiri, M., & Ahmadizar, F. (2022). An equitable and accessible vaccine supply chain network in the epidemic outbreak of COVID-19 under uncertainty. Journal of Ambient Intelligence and Humanized Computing, 1–25. https://doi.org/10.1007/s12652-022-03865-2

Soria-Arguello, I., Torres-Escobar, R., Pérez-Vicente, H. A., & Perea-Rivera, T. G. (2021). A proposal mathematical model for the vaccine COVID-19 distribution network: A case study in Mexico. Mathematical Problems in Engineering, 1-11. https://doi.org/10.1155/2021/5484101

Sripada, S., Jain, A., Ramamoorthy, P., & Ramamohan, V. (2021). A decision support framework for optimal vaccine distribution across a multi-tier cold chain network. arXiv. https://doi.org/10.48550/arxiv.2109.04204

Su, Z., McDonnell, D., Cheshmehzangi, A., Li, X., Maestro, D., Šegalo, S., Ahmad, J., & Hao, X. (2021). With great hopes come great expectations: Access and adoption issues associated with COVID-19 vaccines. JMIR Public Health Surveill, 7(8), e26111. https://doi.org/10.2196/26111

Tang, L., Li, Y., Bai, D., Liu, T., & Coelho, L. C. (2022). Bi-objective optimization for a multi-period COVID-19 vaccination planning problem. Omega, 110, 102617. https://doi.org/10.1016/J.OMEGA.2022.102617

Wen, Z., Yue, T., Chen, W., Jiang, G., & Hu, B. (2023). Optimizing COVID-19 vaccine allocation considering the target population. Frontiers in Public Health, 10, 1015133. https://doi.org/10.3389/fpubh.2022.1015133

World Health Organization. (2020, March 8). WHO coronavirus (COVID-19) dashboard with vaccination data. Retrieved December 1, 2022, from https://covid19.who.int/table

Yang, Y., Bidkhori, H., & Rajgopal, J. (2021). Optimizing vaccine distribution networks in low and middle-income countries. Omega, 99, 102197. https://doi.org/10.1016/J.OMEGA.2020.102197

Yang, Y., & Rajgopal, J. (2020). An iterative cyclic algorithm for designing vaccine distribution networks in low- and middle-income countries, Proceedings of the 2019 25th International Joint Conference on Industrial Engineering and Operations Management (IJCIEOM 2019). https://doi.org/10.1007/978-3-030-43616-2_54




DOI: http://dx.doi.org/10.22441/ijiem.v6i1.28013

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

IJIEM - Indonesian Journal of Industrial Engineering & Management
Program Pascasarjana Magister Teknik Industri Universitas Mercu Buana
Kampus Menteng - Gedung Tedja Buana, Floor 4th  
Jl. Menteng Raya No. 29  Jakarta Pusat- Indonesia
Tlp.: +62 21 31935454 Fax: +62  21 31934474
http://publikasi.mercubuana.ac.id/index.php/ijiem

Email:  [email protected]

 

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

 

Web Analytics Made Easy - Statcounter View My Stats

The journal is indexed by: