Analysis of Raw Material Inventory Control in The Amplang Production Process (Case Study: UD Taufik Jaya Makmur)

Fadhylah Anasia Mangkona, Wahyuda Wahyuda, Farida Djumiati Sitania

Abstract


UD Taufik Jaya Makmur is an SME that produces amplang in various shapes and packaging sizes. Inventory control at this SME faces several issues, such as the lack of production scheduling, high inventory costs, and changes in raw material prices, especially for tapioca flour and fish. These problems impact the quality of service and provide opportunities for competitors to attract consumers. Therefore, a deterministic method is employed to achieve optimal inventory control, which includes methods such as Economic Order Quantity (EOQ), Period Order Quantity (POQ), Least Unit Cost (LUC), Least Total Cost (LTC), Economic Part Period ( EPP), Part Period Balancing (PPB), Silver Meal, and Wagner Within. Calculations indicate that the optimal inventory for tapioca flour, after considering the minimum purchase lot from suppliers and warehouse capacity, is achieved using the Economic Part Period (EPP), Part Period Balancing (PPB), and Wagner Within methods. The inventory cost for meeting the demand for the next year is IDR733.802, with savings reaching 72% compared to the business policy. For fish, the optimal inventory is achieved using the Period Order Quantity (POQ), Least Unit Cost (LUC), Least Total Cost (LTC), and Wagner Within methods. The inventory cost is IDR9.159.728, with savings reaching 37% compared to the business policy. Sensitivity analysis shows that inventory control for tapioca flour and fish is sensitive to ordering costs (distribution), necessitating recalculations if there are future changes.

Keywords


Amplang; Inventory; Decomposition methods; Deterministic methods; Sensitivity analysis

Full Text:

PDF

References


Ardila, N., Lubis, R. S., & Widyasari, R. (2022). Penerapan Metode Economic Part Period (EPP) dan Metode Part Period Balancing (PPB) Pada Pengendalian Persediaan Pil KB. SEPREN: Journal of Mathematics Education and Applied , 4(1), 114–122. https://doi.org/10.36655/sepren.v4i1

Aritantia, Y., Sumantri, Y., & Yuniarti, R. (2018). Inventory Planning of Material Based on Integration of Distribution Requirement Planning and Material Requirement Planning at PT. PLN. Jurnal Rekayasa Dan Manajemen Sistem Industri, 6(2).

Aryati, A., Purnamasari, I., & Nasution, Y. N. (2020). Peramalan dengan Menggunakan Metode Holt-Winters Exponential Smoothing (Studi Kasus: Jumlah Wisatawan Mancanegara yang Berkunjung Ke Indonesia). Jurnal EKSPONENSIAL, 11(1). https://doi.org/ 10.30872/eksponensial.v11i1.650

Assauri, S. (2016). Manajemen Operasi Produksi. Rajawali Pers.

Badan Pusat Statistik Indonesia. (2024). Inflasi year-onyear (y-on-y) pada Desember 2023 sebesar 2,61 persen. https://www.bps.go.id/id/pressrelease/2024/01/02/2299/%20inflasi-year-on-year--y-on-y--pada-desember-2023-sebesar-2-61-persen--inflasi-tertinggi-terjadi-di-sumenep-sebesar-5-08-persen-.html

Badan Pusat Statistik Provinsi Kalimantan Timur. (2024). Ekonomi Provinsi Kalimantan Timur Tahun 2023 Tumbuh Sebesar 6,22 Persen. https://kaltim.bps.go.id/id/pressrelease/2024/02/05/1120/ekonomi-provinsi-kalimantan-timur-tahun-2023-tumbuh-sebesar-6-22-persen.html

Fani, E., Widjajati, F. A., & Soehardjoepri. (2017). Perbandingan Metode Winter Eksponensial Smoothing dan Metode Event Based untuk Menentukan Penjualan Produk Terbaik di Perusahaan X. Jurnal Sains Dan Seni ITS, 6(1), A1–A5.

Fitriyani, E., & Siahaan, M. (2020). Analisis Pengendalian Persediaan Bahan Baku dengan Menggunakan Metode EOQ pada PT Sigma Indonesia MFG. Journal of Management, 1(2), 102–106. https://doi.org/10.37010/jdc.v1i2

Fitroni, M. R. A., & Pulansari, F. (2024). Analysis of PVC-based Product Inventory Control with Economic Production Quantity and Lagrange Multiplier Methods at PT. XYZ. IJIEM - Indonesian Journal of Industrial Engineering and Management, 5(1), 148–157. https://doi.org/10.22441/ijiem.v5i1.22308

Kristiyanti, D. A., & Sumarno, Y. (2020). Penerapan Metode Multiplicative Decomposition (Seasonal) Untuk Peramalan Persediaan Barang Pada PT. Agrinusa Jaya Santosa. Jurnal Sistem Komputer Dan Kecerdasan Buatan, 3(2), 45–51. https://doi.org/ 10.47970/siskom-kb.v3i2.145

Kumila, A., Sholihah, B., Evizia, E., Safitri, N., & Fitri, S. (2019). Perbandingan Metode Moving Average dan Metode Naïve Dalam Peramalan Data Kemiskinan. JTAM | Jurnal Teori Dan Aplikasi Matematika, 3(1), 65. https://doi.org/10.31764/jtam.v3i1.764

Nasution, A. H., & Prasetyawan, Y. (2008). Perencanaan & Pengendalian Produksi. PT Graha Ilmu: Yogyakarta.

Natalya, Kambolong, M., & Yusuf, M. (2018). Analisis Pengaruh Kualitas Pelayanan Terhadap Kepuasan Konsumen pada PT. Matahari Departement Store Lippo Plaza Kendari. Jurnal Administrasi Bisnis, 3(1), 104–114. https://doi.org/ 10.52423/bujab.v3i1.9602

Nugraha, E. Y., & Suletra, I. W. (2017). Analisis Metode Peramalan Permintaan Terbaik Produk Oxycan pada PT. Samator Gresik. Seminar Dan Konferensi Nasional IDEC, 414–422.

Portal Kaltim. (2018). Produk K-UMKM Amplang. https://www.kaltimprov.go.id/berita/amplang

Putrianti, E. E., Wahyuda, & Sitani, F. D. (2024). Soybean Inventory Management in the Production Process of the Semoga Laris Tofu Factory. IJIEM (Indonesian Journal of Industrial Engineering & Management), 5(2), 379–391. https://doi.org/10.22441/ijiem.v5i2.24140

Rabbani, K. J., Wahyuda, & Sitania, F. D. (2022). Analisis Pengendalian Persediaan Kedelai pada PRIMKOPTI Guna Memenuhi Kebutuhan Produksi Industri Tahu Tempe di Balikpapan. G-Tech: Jurnal Teknologi Terapan, 6(2), 284–294. https://doi.org/10.33379/gtech.v6i2.1709

Rahmawi, R., Sari, R. F., & Batubara, A. U. (2023). Metode Just In Time dan Algoritma Wagner Within dalam Pengendalian Persediaan Alat Kesehatan. Jurnal Bayesian: Jurnal Ilmiah Statistika Dan Ekonometrika, 3(2), 161–173. https://doi.org/ 10.46306/bay.v3i2.57

Santoso, & Heryanto, R. M. (2017). Perencanaan dan Pengendalian Produksi 1. Penerbit Alfabeta.

Satu Data Indonesia. (2024). Data UMKM Prov. Kaltim Tahun 2021-2023. https://katalog.data.go.id/dataset/data-umkm

Solahuddin, A., & Andari, T. T. (2018). Analisis Pengendalian Persediaan Untuk Meminimalisasi Biaya pada Bahan Kemasan Botol 70 Ml 8 Gram di PT. Milko Beverage Industry Bogor. Jurnal Visionida, 4(2), 54–66. https://doi.org/10.30997/jvs.v4i2.1532

Syaifulloh, A. (2018). Perbandingan 6 Metode Forecasting dalam Peramalan Jumlah Maba STMIK PPKIA Pradnya Paramita Malang. Jurnal Teknologi Informasi, 9(2), 91–98. https://doi.org/10.36382/jti-tki.v9i2.328

Utami, S. F., Arisma, S. Y., Hermanto, K., & Ruskartina, E. (2020). Peramalan Jumlah Penjualan Sepeda Motor Menggunakan Metode Time Series Studi Kasus: Dealer Motor Nusantara Surya Sakti (NSS) Sumbawa. Jurnal Teknik Dan Sains Fakultas Teknik Universitas Teknologi Sumbawa, 1(2), 33–41. https://doi.org/10.36761/hexagon.v1i2

Yuliyanti, R., & Arliani, E. (2022). Peramalan Jumlah Penduduk Menggunakan Model Arima. Jurnal Kajian Dan Terapan Matematika, 8(2), 114–128. https://doi.org/10.21831/jktm.v8i2.18265




DOI: http://dx.doi.org/10.22441/ijiem.v6i3.31071

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

IJIEM - Indonesian Journal of Industrial Engineering & Management
Program Pascasarjana Magister Teknik Industri Universitas Mercu Buana
Kampus Menteng - Gedung Tedja Buana, Floor 4th
Jl. Menteng Raya No. 29 Jakarta Pusat- Indonesia
Tlp.: +62 21 31935454 Fax: +62 21 31934474
http://publikasi.mercubuana.ac.id/index.php/ijiem

Email: [email protected]

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Web Analytics Made Easy - StatcounterView My Stats

The journal is indexed by: