Multicriteria Selection of Friction Stir Welded Al-Tib2 Metal Matrix Composites using WASPAS to Improve Composite Development and Design
Abstract
Keywords
Full Text:
PDFReferences
Alinezlad A and Khalili J (2019). New Methods and Applications in Multiple Attribute Decision Making (MADM), International Series in Operation Research and Management Science, Springer Nature Switzerland AG, Cham, Switzerland, https://doi.org/10.1007/978-3-030-15009-9
Balaji ND, Venkatanao CH, Srinivasarao K, Madhusudan RG, Rambabu G, (2018). Optimisation of friction stir welding parameters to improve corrosion resistance and hardness of AA2219 aluminium alloy welds, Materials Today Proceedings, 15: 76-83. https://doi.org/10.1016/j.matpr.2019.05.027
Barati M., Abbasi M., and Abedini M., (2019). The effects of friction stir processing and friction stir vibration processing on mechanical, wear and corrosion characteristics of Al6061/SiO2 surface composite, Journal of Manufacturing Processes, 45: 491-497. https://doi.org/10.1016/j.jmapro.2019.07.034
Bagočius V., Zavadskas K.E., Turskis Z., (2013b). Multi-criteria selection of a deep-water port in Klaipeda, Procedia Engineering, 57:144-148. https://doi.org/10.1016/j.proeng.2013.04.021
Bitarafan M., Zolfani S.H., Arefi S.L., Zavadskas E.K., Mahmoudzadeh A., (2014). Evaluation of real-time intelligent sensors for structural health monitoring of bridges based on SWARA-WASPAS: A case in Iran, Baltic Journal of Road and Bridge Engineering, 9(4):333-340. https://doi.org/10.3846/bjrbe.2014.40
Chen H., Pula Z., Hussain T./ McCartney D.G., (2019). Fabrication and microstrain evolution of Al-TiB2 composite coating by cold spring deposition, Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 233(6): 1044-1052. https://doi.org/10.1177/1464420717690559
Christy T.V., (2010). Production, characterization and friction stir welding of Al-TiB2 metal matrix composites, Thesis, Faculty of Mechanical Engineering, Anna University, Chennai, India. https://shodhganga.inflibnet.ac.in/handle/10603/11421
Çelen, A. (2014). Comparative analysis of normalization procedures in TOPSIS method: with an application to Turkish deposit banking market. Informatica, 25(2): 185-208. https://doi.org/10.15388/Informatica.2014.10
Diakoulaki D., Mavrotas G., Papayannakis L. (1995). Determining objective weights in multiple criteria problems: The critic method, Computers and Operations Research, 22(7): 763-770. https://doi.org/10.1016/0305-0548(94)00059-H
Ghorabaee M.K., Zavadskas E.K., Amiri M., Esmaeili A., (2016). Multi-criteria evaluation of green suppliers using an extended WASPAS method with interval type-2 fuzzy sets, Journal of Cleaner Production, 137:213-229. https://doi.org/10.1016/j.jclepro.2016.07.031
Karpasand F., Abbasi A., Ardestani M. (2020). Effect of amount of TiB2 and B4C particles on tribological behaviour of Al7075/B4C/TiB2 mono and hybrid surface composites produced by friction stir processing, Surface and Coatings Technology, 390, 125680. https://doi.org/10.1016/j.surfcoat.2020.125680
Karloopia J., Mozammil S., Jha P. K. (2018). An experimental study on friction stir welding of Al-Si-TiB2 metal matrix composite, Materials Today: Proceedings, 5(9): 17260-17269. https://doi.org/10.1016/j.matpr.2018.04.137
Kishan V., Devaraju A., Lakshmi K.P., (2017). Influence of volume percentage of nan-TiB2 particles on tribological and mechanical behaviour of 6061-T6 Al-alloy nano-surface composite layer prepared via friction stir process, Defence Technology, 13(1): 16-21. https://doi.org/10.1016/j.dt.2016.11.002
Kishan V., Devaraju A. (2017). Preparation of nano surface layer composite (TiB2)p on 6061-T6 aluminium alloy via friction stir processing, Materials Today: Proceedings, 4(2): 4065-4069. https://doi.org/10.1016/j.matpr.2017.02.309
Li N., Li W., Yang X., Xu Y., Vairis A., (2018). Corrosion characteristics and wear performance of cold sprayed coatings of reinforced Al deposited onto friction stir welded AA 2024-T3 joints, Surface and Coatings Technology, 349: 1069-1076. https://doi.org/10.1016/j.surfcoat.2018.06.058
Mardani A., Nilashi M., Zakuan N., Loganathan N., Soheilirad S., Mat Saman M.Z., Ibrahim O, (2017). A systematic review and meta-analysis of SWARA and WASPAS methods: Theory and applications with recent fuzzy developments, Applied Soft Computing, 57: 265-292. https://doi.org/10.1016/j.asoc.2017.03.045
Mozammil S., Karloopia J., Verma R., Jha P. K. (2020). Mechanical response of friction stir butt weld Al-4.5%Cu/TiB2/2.5p in situ composite: Statistical modelling and optimization, Journal of Alloys and Compounds, 826, 154184. https://doi.org/10.1016/j.jallcom.2020.154184
Paidpilli M., Gupta G.K., Upadhyaya A., (2019). Effect of matrix powder and reinforcement contention on tribological behaviour of particulate 6061 Al-TiB2 composites, Journal of Composite Materials, 53(9): 1181-1195. https://doi.org/10.1177/0021998318796172
Poria S., Sutradhar G., Sahoo P., (2016). Wear and friction behaviour of stir cast Al-TiB2 metal matrix composite with various lubricant, Tribology in Industry, 38(4): 508-521. http://www.tribology.rs/journals/2016/2016-4/8.pdf
Prabu, M., Magibalan, S., Senthilkumar, C., Palanivelu, R., Senthilkumar, P., & Boopathi, R. (2019). Modeling of machining parameters for MRR and TWR in EDM characteristics on Al/10 wt.-% TiB2 composites. Materials Testing, 61(6), 559-566. https://doi.org/10.3139/120.111355
Sethi D., Acharya U., Medhi T., Shekhar S., Roy B.S. (2020). Microstructural and mechanical property of friction stir welded Al7075/TiB2 aluminium matrix composite, Materials Today: Proceedings, In press. https://doi.org/10.1016/j.matpr.2020.01.198
Senthil V. and Balasubramanian E., (2019). Effect of tool pin profile on corrosion behaviour of friction stir processed LM25AA 10%SiCp metal matrix composites, Metal Power Report, 75(2): 110-117. https://doi.org/10.1016/j.mprp.2019.11.001
Sharma H., Kumar K., Kumar R., Gulati P., (2018). A study of vibration and wear resistance of friction stir processed metal matrix composite, Materials Today: Proceedings, 5: 28354-28363. https://doi.org/10.1016/j.matpr.2018.10.120
Sharma R., Singh A.K., Arora A., Pati S., De P.S., (2019). Effect of friction stir processing on corrosion of Al-TiB2 based composite in 3.5 wt% sodium chloride solution, Transactions of Non-ferrous Metals Society of China, 29: 1383-1392. https://doi.org/10.1016/S1003-6326(19)65045-4
Staniūnas M., Medineckienė M., Zavadskas E.K., Kalibatas D., (2013c). To modernize or not: Ecological–economical assessment of multi-dwelling houses modernization, Archives of Civil and Mechanical Engineering, 13: 88-98. https://doi.org/10.1016/j.acme.2012.11.003
Suresh S., Shenbag N., Moorthi V., (2002). Aluminium-titanium diboride (Al-TiB2) metal matrix composites: Challenges and opportunities, Procedia Engineering, 38: 89-97. https://doi.org/10.1016/j.proeng.2012.06.013
Vafaei N., Ribeiro R.A., Camarinha-Matos L. (2016). Normalization techniques for multi-criteria decision making: Analytical hierarchy process case study, DoCEIS 2016 Conference, Technological Innovation for Cyber-Physical Systems, IFIP AICT series 470/2016, Springer, 261-269, https://doi.org/10.1007/978-3-319-31165-4_26.
Vajagah P.H., Abdizadeh H., Baghdesara M.A., (2015). Fabrication of TiB2 nanoparticles-reinforced aluminium matrix composites by powder metallurgy route, Journal of Composite Materials, 49(25): 3115-3125. https://doi.org/10.1177/0021998314560382
Vijay S.J., and Murugan N., (2010). Influence of tool pin profile on the metallurgical and mechanical properties of friction stir welded Al-10wt%TiB2 metal matrix composite, Materials and Design, 31: 3585-3589. https://doi.org/10.1016/j.matdes.2010.01.018
Wang J., Chen G., Zhang J., Chang X, Chen Q, Zhan H., Wan H., Han F., (2019). Microstructures and mechanical properties of squeeze cast in-situ TiB2/2024Al composite fabricated by applying ultrasonic vibration during solidification, Materials Research Express, 6(10), 106599. https://doi.org/10.1088/2053-1591/ab3c19
Zavadskas, E.K., Turskis, Z., Antucheviciene, J., Zakarevicius, A., (2012). Optimization of weighted aggregated sum product assessment, Electronics and Electrical Engineering, 6(122): 3–6. https://doi.org/10.5755/j01.eee.122.6.1810
Zavadskas, E. K., Antucheviciene, J., Saparauskas, J., & Turskis, Z. (2013a). MCDM methods WASPAS and MULTIMOORA: Verification of robustness of methods when assessing alternative solutions. Economic Computation and Economic Cybernetics Studies and Research, 47(2), 5-20. http://www.ecocyb.ase.ro/2013a.htm
Zavadskas E.K., Antucheviciene J., Šaparauskas J., Turskis Z., (2013b). Multi-criteria assessment of facades’ alternatives: peculiarities of ranking methodology, Procedia Engineering, 57: 107-112. https://doi.org/10.1016/j.proeng.2013.04.016
Zhao K., Kang H., Wu Y., Lui M., Guo E., Chan Z., Wang T., (2020). Manipulating the particle distribution of in situ TiB2p/Al composites via acoustic vibration and cooling rate, Materials Letters, 262, 127063. https://doi.org/10.1016/j.matlet.2019.127063
DOI: http://dx.doi.org/10.22441/ijiem.v1i3.9943
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
IJIEM - Indonesian Journal of Industrial Engineering & Management
Program Pascasarjana Magister Teknik Industri Universitas Mercu Buana
Kampus Menteng - Gedung Tedja Buana, Floor 4th
Jl. Menteng Raya No. 29 Jakarta Pusat- Indonesia
Tlp.: +62 21 31935454 Fax: +62 21 31934474
http://publikasi.mercubuana.ac.id/index.php/ijiem
Email: [email protected]
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The journal is indexed by: