Prediksi Keterserapan Siswa SMK Pada Dunia Industri Dengan Pendekatan Educational Data Mining
Abstract
Tingginya tingkat penyerapan tenaga kerja siswa kejuruan sangat menentukan kualitas suatu Sekolah Menengah Kejuruan (SMK). Semakin banyak siswa yang terserap ke dunia kerja dan semakin cepat bekerja setelah lulus maka semakin baik bagi SMK tersebut. Data mining adalah solusi yang berguna untuk mengidentifikasi pola tersembunyi dan memberikan saran untuk meningkatkan kinerja siswa. Penelitian ini menggunakan data rapor dari 167 siswa jurusan Teknik Jaringan Komputer SMK Negeri 26 Jakarta selama enam semester, dari tiga angkatan siswa yang lulus tahun 2015 hingga 2017. Penelitian ini menggunakan model SVR dan ANN dan metode Mean Absolute Error (MAE). Hasil penelitian menunjukkan bahwa ANN dengan data seluruh fitur yang digunakan, dengan model normalisasi Standard Scaler, dan algoritma aktifasi Relu, jumlah Neuron sebanyak 128 dan Iter Max 150 menunjukkan performa terbaik, yaitu MAE sebesar 2,2 bulan. Heatmap korelasi Pearson mengungkapkan bahwa semua mata pelajaran yang sangat erat hubungannya dan mempengaruhi jumlah serapan mahasiswa di dunia kerja adalah mata pelajaran produktif (vokasi) pada semester 1 & 2 pada aspek penilaian keterampilan (praktik). Untuk meningkatkan angka penyerapan tenaga kerja, mahasiswa harus mempertajam dan memperdalam kompetensi mata pelajaran praktik vokasi pada awal semester. Hasil penelitian ini dapat dijadikan acuan untuk memprediksi penyerapan lulusan SMK di dunia kerja dan sebagai langkah antisipatif untuk meningkatkan nilai kompetensi sebelum memasuki dunia kerja.
Keywords
Full Text:
PDFReferences
A. A. Dudhe and S. R. Sakhare, “Teacher Ranking System To Rank of Teacher As Per Specific Domain.,” ICTACT J. Soft Comput., vol. 6956, no. January, pp. 1589–1596, 2018, doi: 10.21917/ijsc.2018.0222.
E. Y. Obsie and S. A. Adem, “Prediction of Student Academic Performance using Neural Network, Linear Regression and Support Vector Regression: A Case Study,” Int. J. Comput. Appl., vol. 180, no. 40, pp. 39–47, 2018, doi: 10.5120/ijca2018917057.
Y. K. Salal, S. M. Abdullaev, and Y. M. Kumar, “Educational Data Mining: Study Performance Prediction in Academic,” Int. J. Eng. Adv. Technol., vol. 8, no. 4C, pp. 54–59, 2019.
P. Thakar, A. Mehta, and Manisha, “A Unified Model of Clustering and Classification to I mprove Students ’ Employability Prediction,” I.J. Intell. Syst. Appl., vol. 9, no. September, pp. 10–18, 2017, doi: 10.5815/ijisa.2017.09.02.
D. T. Larose and C. D. Larose, Discovering Knowledge in Data: An Introduction to Data Mining: Second Edition. 2014.
S. Susanto and D. Suryadi, Pengantar Data Mining. 2010.
E. I. A. Warih and Y. Rahayu, “Penerapan Data Mining untuk Menentukan Estimasi Produktivitas Tanaman Tebu dengan Menggunakan Algoritma Linier Regresi Berganda di Kabupaten Rembang,” pp. 1–5, 2014.
P. Akulwar, S. Pardeshi, and A. Kamble, “Survey on Different Data Mining Techniques for Prediction,” in Proceeding of the 2nd International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC)I-SMAC (IoT in Social, Mobile, Analytics and Cloud), 2018, pp. 513–519, doi: 10.1109/I-SMAC.2018.8653734.
J. Hao and T. K. Ho, “Machine Learning Made Easy: A Review of Scikit-learn Package in Python Programming Language,” J. Educ. Behav. Stat., vol. XX, no. X, pp. 1–14, 2019, doi: 10.3102/1076998619832248.
K. R. Srinath, “Python -The Fastest Growing Programming Language,” Int. Res. J. Eng. Technol., vol. 4, no. 12, pp. 354–357, 2017.
M. Yağcı, “Educational data mining: prediction of students ’ academic performance using machine learning algorithms,” Smart Learn. Environ., vol. 9, no. 11, pp. 1–19, 2022, doi: 10.1186/s40561-022-00192-z.
F. Qiu et al., “Predicting students ’ performance in e ‑ learning using learning process and behaviour data,” Sci. Rep., no. 0123456789, pp. 1–15, 2022, doi: 10.1038/s41598-021-03867-8.
S. Amjad, M. Younas, M. Anwar, Q. Shaheen, M. Shiraz, and A. Gani, “Data Mining Techniques to Analyze the Impact of Social Media on Academic Performance of High School Students,” Wirel. Commun. Mob. Comput., vol. 2022, 2022, doi: 10.1155/2022/9299115.
K. Nahar, B. I. Shova, T. Ria, H. B. Rashid, and A. H. . S. Islam, “Mining educational data to predict students A comparative study of data mining techniques,” Educ. Inf. Technol., 2021, doi: https://doi.org/10.1007/s10639-021-10575-3 Mining.
H. Turabieh et al., “Enhanced Harris Hawks optimization as a feature selection for the prediction of student performance,” Computing, 2021, doi: 10.1007/s00607-020-00894-7.
A. Rivas, A. González-briones, G. Hernández, J. Prieto, and P. Chamoso, “Neurocomputing Artificial neural network analysis of the academic performance of students in virtual learning environments,” Neurocomputing, no. xxxx, 2020, doi: 10.1016/j.neucom.2020.02.125.
L. Kemper, G. Vorhoff, and B. U. Wigger, “Predicting student dropout : A machine learning approach Predicting student dropout : A machine learning approach,” Eur. J. High. Educ., vol. 0, no. 0, pp. 1–20, 2020, doi: 10.1080/21568235.2020.1718520.
H. Waheed, S. U. Hassan, N. R. Aljohani, J. Hardman, S. Alelyani, and R. Nawaz, “Predicting academic performance of students from VLE big data using deep learning models,” Comput. Human Behav., vol. 104, 2020, doi: 10.1016/j.chb.2019.106189.
V. Vijayalakshmi and K. Venkatachalapathy, “Deep Neural Network for Multi-Class Prediction of Student Performance in Educational Data,” Int. J. Recent Technol. Eng., vol. 3878, no. 2, pp. 5073–5081, 2019, doi: 10.35940/ijrte.B2155.078219.
S. Ranjeeth, T. P. Latchoumi, M. Sivaram, A. Jayanthiladevi, and T. S. Kumar, “Predicting Student Performance with ANNQ3H: A Case Study in Secondary Education,” Proc. 2019 Int. Conf. Comput. Intell. Knowl. Econ. ICCIKE 2019, pp. 603–607, 2019, doi: 10.1109/ICCIKE47802.2019.9004387.
L. M. Abu Zohair, “Prediction of Student’s performance by modelling small dataset size,” Int. J. Educ. Technol. High. Educ., vol. 16, no. 1, 2019, doi: 10.1186/s41239-019-0160-3.
C. Burgos, M. L. Campanario, D. de la Peña, J. A. Lara, D. Lizcano, and M. A. Martínez, “Data mining for modeling students’ performance: A tutoring action plan to prevent academic dropout,” Comput. Electr. Eng., vol. 66, pp. 541–556, 2018, doi: 10.1016/j.compeleceng.2017.03.005.
A. Mueen, B. Zafar, and U. Manzoor, “Modeling and Predicting Students ’ Academic Performance Using Data Mining Techniques,” I.J. Mod. Educ. Comput. Sci., no. November, pp. 36–42, 2016, doi: 10.5815/ijmecs.2016.11.05.
E. Fernandes, M. Holanda, M. Victorino, V. Borges, R. Carvalho, and G. Van Erven, “Educational data mining: Predictive analysis of academic performance of public school students in the capital of Brazil,” J. Bus. Res., vol. 94, no. February, pp. 335–343, 2019, doi: 10.1016/j.jbusres.2018.02.012.
F. Zhang and L. J. O. Donnell, “Support vector regression,” in Machine Learning, Elsevier Inc., 2020, pp. 123–140.
F. Zhang and L. J. O’Donnell, Support vector regression. Elsevier Inc., 2019.
M. Yusa, E. Utami, and E. T. Luthfi, “Analisis Komparatif Evaluasi Performa Algoritma Klasifikasi pada Readmisi Pasien Diabetes,” J. Buana Inform., vol. 7, no. 4, pp. 293–302, 2016, doi: 10.24002/jbi.v7i4.770.
DOI: http://dx.doi.org/10.22441/jte.2024.v15i1.011
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Jurnal Teknologi Elektro
Publisher Address:
Teknik Elektro, Fakultas Teknik, Universitas Mercu Buana
Jl. Raya Meruya Selatan, Kembangan, Jakarta 11650
Tlp./Fax: +62215871335
Email: [email protected]
Website of Electrical Engineering
http://teknikelektro.ft.mercubuana.ac.id
p-ISSN : 2086-9479
e-ISSN : 2621-8534
Jurnal URL : http://publikasi.mercubuana.ac.id/index.php/jte
Jurnal DOI: 10.22441/jte
Ciptaan disebarluaskan di bawah Lisensi Creative Commons Atribusi-NonKomersial 4.0 Internasional.