Sistem Pembelajaran Mandiri untuk Deteksi Anomali pada Proses Radius Shaping Menggunakan Deep Neural Network Berbasis Bidirectional Protocol
Abstract
Keywords
Full Text:
PDFReferences
J. Wu and S. X.Yang, “Intelligent Control of Bulk Tobacco Curing Schedule Using LS-SVM- and ANFIS-Based Multi-Sensor Data Fusion Approaches,” Sensors, vol. 19, p. 1778, 2019, doi: https://doi.org/10.3390/s19081778.
Y. Wang and L. Qin, “Research on state prediction method of tobacco curing process based on model fusion,” J. Ambient Intell. Humaniz. Comput., no. April, 2021, doi: 10.1007/s12652-021-03129-5.
J. Wu and S. X. Yang, “Modeling of the Bulk Tobacco Flue-Curing Process Using a Deep Learning-Based Method,” IEEE Access, vol. 9, pp. 140424–140436, 2021, doi: 10.1109/ACCESS.2021.3119544.
B. D. SUBIANTORO, PENINGKATAN KINERJA PROGRAMMABLE LOGIC CONTROLMITSUBISHI SERI Q MENGGUNAKAN OPTICAL DISTANCE SENSORO1D100 BERBASIS SISTEM KONTROL SHAPPING. 2019.
B. Sumathy, D. Abinash, D. Aravindan, K. Prasaanth, and D. T. Muralidharan, “Automation of Tire Curing Machine Using IOT,” Indian J. Sci. Technol., vol. 12, no. 29, pp. 1–7, 2019, doi: 10.17485/ijst/2019/v12i29/146978.
Z. Iklima, B. N. Rohman, R. Muwardi, A. Khan, and Z. Arifiansyah, “DEFECT CLASSIFICATION OF RADIUS SHAPING IN THE TIRE CURING PROCESS USING FINE-TUNED DEEP NEURAL NETWORK,” vol. xx, no. x, pp. 1–7.
S. Amini Niaki, E. Haghighat, T. Campbell, A. Poursartip, and R. Vaziri, “Physics-informed neural network for modelling the thermochemical curing process of composite-tool systems during manufacture,” Comput. Methods Appl. Mech. Eng., vol. 384, p. 113959, 2021, doi: 10.1016/j.cma.2021.113959.
J. Zhou, Y. Li, D. Li, and Y. Wen, “Online learning based intelligent temperature control during polymer composites microwave curing process,” Chem. Eng. J., vol. 370, pp. 455–465, 2019, doi: 10.1016/j.cej.2019.03.204.
M. A. Nielsen, “Neural Networks and Deep Learning.” Determination Press, 2015. Accessed: Jan. 18, 2022. [Online]. Available: http://neuralnetworksanddeeplearning.com
John McGonagle, George Shaikouski, Christopher Williams, Andrew Hsu, Jimin Khim, and Aaron Miller, “Backpropagation | Brilliant Math & Science,” Jan. 20, 2020. https://brilliant.org/wiki/backpropagation/ (accessed Jan. 20, 2022).
I. Zendi, “A Microservices-based for Distributed Deep Neural Network of Delta Robot Control System,” 2020 IEEE Int. Conf. Commun. Networks Satell. Comnetsat 2020 - Proc., pp. 218–221, 2020, doi: 10.1109/Comnetsat50391.2020.9328936.
I. Zendi, A. Zody, M. Imam, A. Zody, and A. Khan, “SELF-LEARNING OF DELTA ROBOT USING INVERSE KINEMATICS AND ARTIFICIAL NEURAL NETWORKS,” SINERGI, vol. xx, no. x, pp. 1–7, 2021.
S. Teerapittayanon, B. McDanel, and H. T. Kung, “Distributed Deep Neural Networks over the Cloud, the Edge and End Devices,” Proc. - Int. Conf. Distrib. Comput. Syst., pp. 328–339, 2017, doi: 10.1109/ICDCS.2017.226.
Z. Zhang, “Improved Adam Optimizer for Deep Neural Networks,” 2018 IEEE/ACM 26th Int. Symp. Qual. Serv. IWQoS 2018, pp. 1–2, 2019, doi: 10.1109/IWQoS.2018.8624183.
DOI: http://dx.doi.org/10.22441/jte.2025.v16i2.006
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Jurnal Teknologi Elektro
Publisher Address:
Teknik Elektro, Fakultas Teknik, Universitas Mercu Buana
Jl. Raya Meruya Selatan, Kembangan, Jakarta 11650
Tlp./Fax: +62215871335
Email: [email protected]
Website of Electrical Engineering
http://teknikelektro.ft.mercubuana.ac.id
p-ISSN : 2086-9479
e-ISSN : 2621-8534
Jurnal URL : http://publikasi.mercubuana.ac.id/index.php/jte
Jurnal DOI: 10.22441/jte

Ciptaan disebarluaskan di bawah Lisensi Creative Commons Atribusi-NonKomersial 4.0 Internasional.





