Studi Performansi Image Denoising Menggunakan Persamaan Turunan Parsial

Regina Lionnie, Mudrik Alaydrus

Abstract


Pengurangan derau merupakan salah satu tantangan yang terus berlangsung dan merupakan salah satu dari tantangan terbesar pada riset di area analisis citra digital, khususnya pada topik denoising image. Terlebih, mengurangi derau sambil tetap mempertahankan fitur penting dari citra seperti detail tepian, garis dan sudut seta fitur penting lainnya pada proses denoising image masih merupakan suatu masalah pada riset di topik ini yang belum ditemukan suatu solusi yang memberikan hasil yang memuaskan. Penelitian ini menggunakan metode persamaan turunan parsial Perona-Malik anisotropic diffusion dengan total iterasi 10,15 dan 20 menggunakan dua variasi derau yaitu derau salt and pepper dan derau poisson. Dari hasil percobaan dapat disimpulkan bahwa Perona-Malik anisotropic diffusion dapat menghilangkan derau dan masih dapat mempertahankan fitur citra akan tetapi beberapa fitur pada citra masih ikut terblur karena proses smoothing ini.


Full Text:

PDF

References


A. Priya, et al., "Image Denoising Technique Using Various Filters Models: A Survey," International Conference on Computing, Power and Communication Technologies (GUCON) IEEE, pp. 919-923, 2018.

P, Jain, and V. Tyagi. "A survey of edge-preserving image denoising methods." Information Systems Frontiers, Vol. 18, No. 1, pp. 159-170, 2016.

M. Mafi, et al. "A comprehensive survey on impulse and Gaussian denoising filters for digital images," Signal Processing , Vol. 157, pp. 236-260, 2018.

S. Vishaga and S. L. Das, "A survey on switching median filters for impulse noise removal," 2015 International Conference on Circuits, Power and Computing Technologies [ICCPCT-2015], Nagercoil, pp. 1-6, 2015.

H.R. Shahdoosti, and Z. Rahemi, "Edge-preserving image denoising using a deep convolutional neural network," Signal Processing, Vol. 159, pp. 20-32, 2019.

T. Barbu, and A. Favini, "Rigorous mathematical investigation of a nonlinear anisotropic diffusion-based image restoration model," Electronic Journal of Differential Equations, Vol. 129, pp. 1-9, 2014.

W. Zhu, "A numerical study of a mean curvature denoising model using a novel augmented Lagrangian method," Inverse Problems & Imaging, Vol. 11, No.6, pp. 975-996, 2017.

C. Brito‐Loeza, K. Chen, and V. Uc‐Cetina, "Image denoising using the Gaussian curvature of the image surface." Numerical Methods for Partial Differential Equations, Vol. 32, No. 3, pp. 1066-1089, 2016.

F. Ren, and R.R. Zhou. "Optimization model for multiplicative noise and blur removal based on Gaussian curvature regularization." JOSA, Vol. 35, No. 5, pp. 798-812, 2018.

Y. Li, et al, "A survey of recent advances in visual feature detection." Neurocomputing, Vol. 149, pp. 736-751, 2015.

V. Kamalaveni, R. Anitha Rajalakshmi, and K. A. Narayanankutty, "Image denoising using variations of Perona-Malik model with different edge stopping functions," Procedia Computer Science, Vol. 58, pp. 673-682, 2015.

P.Perona and J. Malik, “Scale-space and edge detection using anisotropic diffusion,” IEEE Transaction on Pattern Analysis and Machine Intelligence, vol. 12, no.7, pp. 629-638, 1990.

D. Lopes “Anisotropic Diffusion (Perona & Malik)” (https://www.mathworks.com/matlabcentral/fileexchange/14995-anisotropic-diffusion-perona-malik), MATLAB Central File Exchange. Retrieved June 11, 2020.




DOI: http://dx.doi.org/10.22441/jte.2020.v11i3.005

Refbacks

  • There are currently no refbacks.


Copyright (c) 2020 Jurnal Teknologi Elektro

Publisher Address:
Teknik Elektro, Fakultas Teknik, Universitas Mercu Buana
Jl. Raya Meruya Selatan, Kembangan, Jakarta 11650
Tlp./Fax: +62215871335
Email: [email protected]
Website of Electrical Engineering
http://teknikelektro.ft.mercubuana.ac.id

p-ISSN : 2086-9479
e-ISSN : 2621-8534
Jurnal URL : http://publikasi.mercubuana.ac.id/index.php/jte
Jurnal DOI: 10.22441/jte

 

Lisensi Creative Commons
Ciptaan disebarluaskan di bawah Lisensi Creative Commons Atribusi-NonKomersial 4.0 Internasional.

Web
Analytics Made Easy - StatCounter
View My Stats

The Journal is indexed by: