PENGARUH WAKTU PENGADUKAN TERHADAP UKURAN KRISTALIT DAN HAMBATAN JENIS Al-Ti MENGGUNAKAN TEKNIK PEMADUAN MEKANIK

Adolf Asih Supriyanto

Abstract


Pengaruh waktu pengadukan terhadap ukuran kristalit dan hambatan jenis Al-Ti telah dijalankan menggunakan pemaduan mekanik. Serbuk aluminium dan titanium dicampur melalui teknik pemaduan mekanik menggunakan bola stainless steel didalam lingkungan gas argon dengan waktu pengadukan sampai 30 jam. Plenetari model Fritsch Pulverisette-5 dengan kecepatan 360 putaran per menit digunakan sebagai alat pemaduan dan asam stearik digunakan sebagai bahan untuk mengawal selama proses pencampuran. Bola stainless steel yang digunakan berdiameter 20 mm dengan rasio berat bola terhadap berat serbuk adalah 20 : 1. Perubahan struktur dan morfologi partikel sepanjang proses pemaduan mekanik diamati menggunakan XRD, SEM dan EDX. Sedangkan perubahan hambatan jenis diamati dengan menggunakan Hand-Held Eddy Current Conductivity Meter. Hasil yang diperoleh menggunakan XRD menunjukan bahwa puncak-puncak Ti semakin menghilang dengan bertambahnya waktu pengadukan, yang menujukkan bahwa telah terbentuk proses paduan dimana atom Ti masuk ke dalam matrik Al. Ukuran kristalit paduan Al-Ti yang diperoleh semakin menurun dengan bertambahnya waktu pengadukan. Hasil SEM menunjukkan bahwa nanokristalit yang dihasilkan adalah paduan biner Al-Ti. Hasil yang diperoleh menggunakan Hand-Held Eddy Current Conductivity Meter menunjukkan bahwa hambatan jenis paduan Al-Ti semakin meningkat dengan bertambahnya waktu pengadukan.

Full Text:

PDF

References


. Zhan, Z., He, Y., Wang, D. and Gao, W. 2006. Low-temperature Processing of Fe–Al Intermetallic Coatings Assisted by Ball Milling. Intermetallics 14: 75–81.

. Fan, G.J., Choo, H., Liaw, P.K. and Lavernia, E.J. 2006. Plastic Deformation and Fracture of Ultrafine-grained Al–Mg Alloys with a Bimodal Grain Size Distribution. Acta Materialia 54: 1759–1766.

. Dahle, A.K., Nogita, K., McDonald, S.D., Dinnis, C. and Lu, L. 2005. Eutectic Modification and Microstructure Development in Al–Si Alloys. Materials Science and Engineering A 413–414: 243–248.

. Li, X., Hui, D., Xuefong, R. and Yaoyao, R. 2007. Microstructures of mechanically activated Ti-46at. % A1 powders and spark plasma sintered ultrafine TiAl alloy. Rare Metals 26(6): 572 – 577.

. Xiaoying Zhu et al. 2006. Oxidation of Mechanically Allyed Al-rich Al-Ti Powder. Oxidation of metals 65: 357 – 376.

. Lauer, St., Guan, Z., Wolf, H. and Wichert, Th. 2002. Investigation of mechanical alloying of Ti–Al compounds using perturbed -angular correlation spectroscopy, x-ray diffraction, and differential scanning calorimetry. J. Mater. Res. 17(8): 2130 – 2139.

. Calderon, H.A., Garibay-Febles, V., Cabrera, A., Cabanas-Moreno, J.G. and Umemoto, M. 2001. Mechanical Properties of Nanocrystalline TiAl-X and TiAl3-X Prepared by Mechanical Alloying and Sintering. Materials Science Forum 360-362: 229 – 234.Cao, G, Geng, L., Zheng. Z, & Naka, M. 2007. The Oxidation of Nanocrystalline Ni3Al Fabricated by Mechanical Alloying and Spark Plasma Sintering. Intermetallics.15: 1672 – 1677.

. Belyakov, A., Sakai, Y., Hara, T., Kimura, Y. and Tsuzaki, K. 2003. Annealing Behavior of Submicrocrystalline Oxide-Bearing Iron Produced by Mechanical Alloying. Metallurgical and Materials Transactions, 34A: 131 – 138.

. Bonastre, J., Escoda, L., González, A., Saurina, J. and Suñol, J. 2007. Influence of Ni content on Fe–Nb–B alloy formation. Journal of Thermal Analysis and Calorimetry, 88(1): 83 – 86.

. Barona Mercado, W., Fajardo, M., Perez Alcazar, G. A. and Sanchez Sthepa, H. 2006. Synthesis and characterization of Fe3AIC0.5 by mechanical alloying. Hyperfine interactions 169: 943 – 949.

. Chicinas, I., Pop, V. and Isnard, O. 2004. Journal of Materials Science 39: 5305 – 5309.

. Angelo L. D., Gonz’ales G. & Ochoa, J. 2007. Phase Transformations Study on Ni75Al25 and Ni50Al50 during Mechanical Alloying and Sintering. Journal of alloys and compounds: 345 – 353.

. Enayati M. H., Sadeghian Z., Salehi, M and Saidi A. 2004. The Effect of milling Parameters on the Synthesis of Ni3Al Intermetallic Compound by Mechanical Alloying. Materials Science and Engineering A. 375 – 377: 809 – 811.

. Cuevas, F.G., Cintas, J., Montes, J.M. and Gallardo, J.M. 2006. Al-Ti Powder Produced Through Mechanical Alloying for Different Time. J Master Sci 41: 8339 – 8346.

. Joshi, P. B., Marathe, G. R., Arun Pratap and Vinod Kurup. 2005. Hyperfine interactions 160: 173 – 180.

. Lu, L. And Lai M. O. 1998. Mechanical Alloying. Kluwer Academic Publisher, London 29.

. Khaloobagheri, M. and Barfjan, S.A. 2015. The Effect of Milling Time on Properties and Microstructure of Cu-Yttria Stabilized Zirconia Composites Fabricated by Powder Metallurgy. Journal of Materials Sciences and Applications 1(2): 78 – 84.




DOI: http://dx.doi.org/10.22441/jtm.v6i4.2023

Refbacks

  • There are currently no refbacks.


Copyright (c) 2018 Jurnal Teknik Mesin

Jurnal Teknik Mesin (JTM)
Program Studi Teknik Mesin, Fakultas Teknik, Universitas Mercu Buana
Jl. Meruya Selatan No. 01, Kembangan, Jakarta Barat 11650, Indonesia
Email: [email protected]
Telp.: 021-5840815/ 021-5840816 (Hunting)
Fax.: 021-5871335

JTM is indexed by the following abstracting and indexing services:

 

 

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

View My Stats