STUDY OF FINITE DIFFERENCE METHOD IN HEAT FLOW SIMULATION OF TWO-CHAMBER THERMOS SEPARATOR MADE OF POLYPROPYLENE USING MATLAB APPLICATIONS

Aap Pandriana

Abstract


Heat transfer can be defined as transfer of energy from one area to another as a result of temperature differences in objects. This indicates heat transfer not only explains how heat energy is transferred from one object to another, but can also predict the rate of heat transfer that occurs under certain conditions. In this case, what is related to the heat flow model equation is two-chamber thermos separator where the separator is made of polypropylene. This separator functions to prevent the flow of heat from one side to the other side of the thermos tube. Polypropylene is included in the insulator category, although heat transfer still occurs. The heat transfer will be calculated using the finite difference method in parabolic partial differential equations using the Matlab application. The heat transfer process is assumed to occur by conduction, with a separator length of 1 cm. Assume the first side of the divider has a right temperature of 100°c, and the other side 20°c. The temperature point measured on the separator is located in the center of the separator. After completing the solution using the Matlab application with the finite difference method, a heat transfer flow simulation was obtained in the two-chamber thermos separator which shows the heat flow transfer at any time. At 0.1 seconds the temperature at T1 is 2.4°c, while at 10 seconds  is 65.9704°c. Then at 0.1 seconds the temperature at T4 is 0.48°c, while at 10 seconds 19.5436°c. The conclusion is in the separator of the two-chamber thermos there is significant heat flow from the side of the first tube to the other side.

Keywords


PDE; Finite Difference; Heat Flow; MATLAB; Polypropylene

Full Text:

PDF

References


BIBLIOGRAPHY

S. Idawati, U. Baso, B. Selviani, and Sunarmi, “Pengaruh Suhu Terhadap Perpindahan Panas Pada Material Yang Berbeda,” Dinamika, vol. 07, no. 1, pp. 62–73, 2016.

V. N. Utami, T. Ruby, S. Saidi, and Amant, “Simulasi Komputasi liran Panas pada Model Pengering Kabinet dengan Metode Beda Hingga,” Pros. Semin. Nas. Metod. Kuantitatif, no. 978, pp. 83–89, 2017.

F. I. Aryanti, “Pembuatan Komposit Polimer Polipropilena/Talk/Masterbatch Hitam Pada Cover Tail,” J. Teknol. dan Manaj., vol. 19, no. 1, pp. 1–6, 2021, doi: 10.52330/jtm.v19i1.8.

S. Sailah, “Menentukan Distribusi Temperatur dengan Menggunakan Metode Crank Nicholson,” J. Penelit. Sains, vol. 13, no. 2, pp. 17–22, 2010.

S. P. Astuti, “Pemanfaatan Aplikasi Kalkulator Fisika untuk Meningkatkan Motivasi Belajar pada Materi Fisika Gerak,” SAP (Susunan Artik. Pendidikan), vol. 6, no. 1, 2021, doi: 10.30998/sap.v6i1.8953.

R. Rahman and H. Hamzah, “Simulasi Numerik Distribusi Panas pada Gabungan Proses Perpindahan Panas Secara Konduksi dan Konveksi Menggunakan Metode Beda Hingga 2 Dimensi,” Saintifik, vol. 10, no. 1, pp. 13–23, 2024, doi: 10.31605/saintifik.v10i1.476.

V. Rachmawati and K. -, “Simulasi perpindahan panas pada lapisan tengah pelat menggunakan metode elemen hingga,” J. Sains dan Seni ITS, vol. 4, no. 2, pp. A13–A18, 2015, [Online]. Available: https://ejurnal.its.ac.id/index.php/sains_seni/article/view/10852%0Ahttps://ejurnal.its.ac.id

I. Noor and A. Fitrian, “Simulasi Sebaran Temperatur Pelat Logam Tipis Besi dan Kuningan Berbasis Matlab,” Navig. Phys. J. Phys. Educ., vol. 2, no. 1, pp. 9–13, 2020, doi: 10.30998/npjpe.v2i1.256.

D. I. Sihombing and M. Si, Diktat Persamaan Diferensial. UNIVERSITAS HKBP NOMMENSEN, 2020.

B. Agus Sulistyono, “Aplikasi Metode Beda Hingga Skema Eksplisit Pada Persamaan Konduksi Panas,” J. Math Educ. Nusant., vol. 01, pp. 41–46, 2018.

T. S. N. Asih, S. B. Waluya, and Supriyono, “Perbandingan Finite Difference Method dan Finite Element Method dalam Mencari Solusi Persamaan Diferensial Parsial,” Prism. 1, vol. 1, pp. 885–888, 2018, [Online]. Available: https://journal.unnes.ac.id/sju/index.php/prisma/

R. P. Rahayu, Y. Yulida, and Thresye, “Solusi Persamaan Diferensial Parsial Linier Orde Dua Menggunakan Metode Polinomial Taylor,” J. Mat. Murni dan Terap. “εpsilon,” vol. 11, pp. 1–11, 2017.

J. Blumm and A. Lindemann, “Characterization of the thermophysical properties of molten polymers and liquids using the flash technique,” High Temp. - High Press., vol. 35–36, no. 6, pp. 627–632, 2003, doi: 10.1068/htjr144.




DOI: http://dx.doi.org/10.22441/jtm.v13i2.27803

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Jurnal Teknik Mesin

Jurnal Teknik Mesin (JTM)
Program Studi Teknik Mesin, Fakultas Teknik, Universitas Mercu Buana
Jl. Meruya Selatan No. 01, Kembangan, Jakarta Barat 11650, Indonesia
Email: [email protected]
Telp.: 021-5840815/ 021-5840816 (Hunting)
Fax.: 021-5871335

JTM is indexed by the following abstracting and indexing services:

 

 

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

View My Stats