Studi Literatur: Pengembangan Framework Big Data Analytic (BDA) Di Distribusi Tenaga Listrik PLN
Abstract
Memasuki era Industry 4.0, data merupakan kebutuhan penting dan vital, eksplorasi yang benar dari data diharapkan dapat meningkatkan daya saing yang mendukung pengambilan keputusan. Transformasi yang cepat dari sektor kelistrikan meningkatkan peluang dan kebutuhan akan analisis data. Di sektor energi di hilir pengambilan data pelanggan listrik menggunakan AMI (Advanced Metering Infrastructure) yang diambil setiap 15 menit menghasilkan volume sebesar 2920 Terabyte dan ini diambil secara terus menerus karena energi listrik dibutuhkan setiap hari dalam kehidupan. Dengan junlah aset yang besar maka mengindikasikan jumlah volume data di Perusahaan Listrik Negara (PLN) sangatlah besar. Maka dari itu penelitian ini bertujuan untuk melakukan studi literatur yang membahas tentang framework aliran data dalam konteks BDA (Big Data Analytic) yang bisa untuk membantu menyelesaikan permasalahan pada sektor energi disisi hilir di PLN. Hasil dari studi ini menghasilkan dua dimensi, yaitu dimensi Single Source of Truth atau Data Life Cycle dan dimensi Asset Life Cycle, dimana didalam dimensi tersebut terdapat 11 Paramater yang digunakan sebagai dasar pembuatan Framework aliran data
Keywords
Full Text:
PDFReferences
Alabi, M. O. (2018). Big Data, 3D Printing Technology, and Industry of the Future. International Journal of Big Data and Analytics in Healthcare, 2(2), 1–20. https://doi.org/10.4018/ijbdah.2017070101
Bevilacqua, M., Ciarapica, F. E., Diamantini, C., & Potena, D. (2017). Big data analytics methodologies applied at energy management in industrial sector: A case study. International Journal of RF Technologies: Research and Applications, 8(3), 105–122. https://doi.org/10.3233/RFT-171671
Caputo, F., Cillo, V., Candelo, E., & Liu, Y. (2019). Innovating through digital revolution: The role of soft skills and Big Data in increasing firm performance. Management Decision, 57(8), 2032–2051. https://doi.org/10.1108/MD-07-2018-0833
Clark, C. A. huddleston. (2008). Mixed Methods Approaches in Family Science Research. April 2008. https://doi.org/10.1177/0192513X08318251
Cochran, D. S., Kinard, D., & Bi, Z. (2016). Manufacturing System Design Meets Big Data Analytics for Continuous Improvement. Procedia CIRP, 50, 647–652. https://doi.org/10.1016/j.procir.2016.05.004
Covey, F. (n.d.). Discipline 1: Focus on the Wildly Important. Www.Franklincovey.Com. https://www.franklincovey.com/the-4-disciplines/discipline-1-wildy-important/
Creswell, J. D. C. (2018). Research Design.
Dollah, R., & Aris, H. (2019). A Big Data Analytics Model for Household Electricity Consumption Tracking and Monitoring. 2018 IEEE Conference on Big Data and Analytics, ICBDA 2018, 44–49. https://doi.org/10.1109/ICBDAA.2018.8629769
Edi, I. (2019). ScienceDirect A New New Model Model for for Integrating Integrating Big Big Data Data into into Phases Phases of of Process Decision-Making Process. Procedia Computer Science, 151(2018), 636–642. https://doi.org/10.1016/j.procs.2019.04.085
gartner.com. (2021). IT Gartner Glossary. Www.Gartner.Com. https://www.gartner.com/en/information-technology/glossary?glossarykeyword=big data
Groggert, S., Wenking, M., Schmitt, R. H., & Friedli, T. (2018). Status quo and future potential of manufacturing data analytics - An empirical study. IEEE International Conference on Industrial Engineering and Engineering Management, 2017-Decem, 779–783. https://doi.org/10.1109/IEEM.2017.8289997
Hajli, N., Tajvidi, M., Gbadamosi, A., & Nadeem, W. (2020). Understanding market agility for new product success with big data analytics. Indaustrial Marketing Management, 86(July 2018), 135–143. https://doi.org/10.1016/j.indmarman.2019.09.010
Hasbullah, H., Ahmad, S., & Hasibuan, S. (2020). Developing I4 . 0 Readiness Index for Factory Operation in Indonesia to. 2020.
Hilbert. (2011). THE WORLD’S TECHNOLOGICAL CAPACITY TO STORE, COMMUNICATE, AND COMPUTE INFORMATION. Www.Martinhilbert.Net. https://www.martinhilbert.net/worldinfocapacity-html/
Hu, J., & Vasilakos, A. V. (2016). Energy Big Data Analytics and Security: Challenges and Opportunities. IEEE Transactions on Smart Grid, 7(5), 2423–2436. https://doi.org/10.1109/TSG.2016.2563461
iam. (2015). Asset Management – an anatomy Asset Management – an Anatomy. December, 1–84.
IEC. (2003). INTERNATIONAL STANDARD IEC 61968 Application integration at electric utilities. 2003.
IGI Global. (n.d.). What is Big Data Analytics (BDA). Www.Igi-Global.Com. Retrieved March 19, 2021, from https://www.igi-global.com/dictionary/big-data-challenges-and-solutions-in-the-medical-industries/63133
Indrawan, H., Cahyo, N., Simaremare, A., Aisyah, S., Selatan, J., & Tauviqirrahman, M. (2019). Readiness Index for Indonesian Power Plant toward Industry 4 . 0. 0–5.
International Organization for Standardization. (2014). ISO 55000 - Overview, Principles And Terminology. International Organization for Standardization, 1, 18. http://www.irantpm.ir/wp-content/uploads/2014/03/ISO-55000-2014.pdf
Jiang, N., Stief, P., Dantan, J., Etienne, A., & Siadat, A. (2019). ScienceDirect ScienceDirect A new of existing products assembly product family identification Wang the methodology to analyze functional and physical architecture Big data processing framework for manufacturing Big data processing framework. Procedia CIRP, 83, 661–664. https://doi.org/10.1016/j.procir.2019.04.109
Kemenperin. (2019). Indonesia Industry 4.0 Readiness Index (INDI 4.0) (Issue April).
Kemenperin. (2020). Melalui INDI 4.0, Kemenperin Akselerasi Industri Bertransformasi Saat Pandemi. Kemenperin.Go.Id. https://kemenperin.go.id/artikel/21838/Melalui-INDI-4.0,-Kemenperin-Akselerasi-Industri-Bertransformasi-Saat-Pandemi-
Kompas.com. (2021). Daftar 7 BUMN Terbesar di Indonesia dari Sisi Aset, Siapa Juaranya? Artikel ini telah tayang di Kompas.com dengan judul “Daftar 7 BUMN Terbesar di Indonesia dari Sisi Aset, Siapa Juaranya?”, Klik untuk baca: https://money.kompas.com/read/2021/02/01/090438. Www.Money.Kompas.Com. https://money.kompas.com/read/2021/02/01/090438126/daftar-7-bumn-terbesar-di-indonesia-dari-sisi-aset-siapa-juaranya?page=all
Kusumasari, D., & Rafizan, O. (2018). Studi Implementasi Sistem Big Data Untuk Mendukung Kebijakan Komunikasi Dan Informatika. Masyarakat Telematika Dan Informasi : Jurnal Penelitian Teknologi Informasi Dan Komunikasi, 8(2), 81. https://doi.org/10.17933/mti.v8i2.104
Li, Z., Zhang, H. mei, Zhao, H. feng, Zeng, H. ping, Liang, W., Wang, L. kui, & Wang, Y. feng. (2012). Industry 4.0: Building the digital enterprise. In pwc.com (Vol. 15, Issue 11).
Marveloustek. (2021). Advanced Analytics. Marveloustek.Com. https://www.marveloustek.com/advanced-analytics/
Maryanto, B. (2017). Big Data dan Pemanfaatannya dalam Berbagai Sektor. Media Informatika, 16(2), 14–19.
Masrizal. (2011). MIXED METHOD RESEARCH. Jurnal Kesehatan Masyarakat, 53–56
Medinová, H., Ludwig, N., Richter, B., & Staudt, P. (2020). Energy and AI Data analytics in the electricity sector – A quantitative and qualitative literature review. Energy and AI, 1, 100009. https://doi.org/10.1016/j.egyai.2020.100009
Miranda, E. (2008). Pengembangan Business Intelligence Bagi Perkembangan Bisnis Perusahaan. CommIT (Communication and Information Technology) Journal, 2(2), 111. https://doi.org/10.21512/commit.v2i2.501
Nazarenko, M. A., & Khronusova, T. V. (2017). Big data in modern higher education. Benefits and criticism. Proceedings of the 2017 International Conference “Quality Management, Transport and Information Security, Information Technologies”, IT and QM and IS 2017, 676–679. https://doi.org/10.1109/ITMQIS.2017.8085914
PLN. (2019a). PLN Statistic 2019 (Vol. 1).
PLN. (2019b). PLN Sustainibilty Report.
PLN Puslitbang. (2020). Questionnaire Assessment Result •.
Raudy, T. (2018). Analisis Critical Success Factor Untuk Implementasi Digital Bisnis Di Indonesia (Studi Kasus: Online Travel Agency). http://repository.its.ac.id/49783/
Rowley, J. (2007). The wisdom hierarchy : representations of the DIKW hierarchy. 33(2), 163–180. https://doi.org/10.1177/0165551506070706
Rudiantara. (2021). Mindset transformasi digital.
Russom, P. (2011). Big Data Analytics.
Schuh, G. G., Anderl, R., Gausemeier, J. J., ten Hompel, M. M., Wahlster, W. (Eds. ., Ander, Lr., Gausemeier, J. J., ten Hompel, M. M., & Wahlster, W. (Eds. . (2020). Industrie 4.0 Maturity Index. Managing the Digital Transformation of Companies. Acatech Study, 64. www.acatech.de/publikationen.
Statista. (2020). Volume of data/information created, captured, copied, and consumed worldwide from 2010 to 2024. https://www.statista.com/statistics/871513/worldwide-data-created/
Tao, F., Qi, Q., Liu, A., & Kusiak, A. (2018). Data-driven smart manufacturing. Journal of Manufacturing Systems. https://doi.org/10.1016/j.jmsy.2018.01.006
Tempo.co. (2021). Jokowi: Data Adalah New Oil, Bahkan Lebih Berharga dari Minyak. Https://Bisnis.Tempo.Co/. https://bisnis.tempo.co/read/1299253/jokowi-data-adalah-new-oil-bahkan-lebih-berharga-dari-minyak
Ungermann, F., Kuhnle, A., Stricker, N., & Lanza, G. (2019). Data analytics for manufacturing systems – A data-driven approach for process optimization. Procedia CIRP, 81, 369–374. https://doi.org/10.1016/j.procir.2019.03.064
Vagh, Y., Armstrong, L., & Diepeveen, D. (2011). Application of a Data Mining Framework for the Identification of Agricultural Production Areas in WA. 2010, 11–22.
Wahyudin, D. (2018). PELUANG DAN TANTANGAN “ BIG DATA ” DALAM MEMBANGUN “ SMART CITY ” UNTUK SISTEM TRANSPORTASI. 5(1), 109–115.
Waller, M. A., & Fawcett, S. E. (2013). Data Science , Predictive Analytics , and Big Data : A Revolution That Will Transform Supply Chain Design and Management. Journal of Business Logistics, 34(2), 77–84.
Windmann, S., Maier, A., Niggemann, O., Bernardi, A., Gu, Y., & Pfrommer, H. (2015). Big Data Analysis of Manufacturing Processes. Journal of Physics. https://doi.org/10.1088/1742-6596/659/1/012055
Yin, S. (2019). Big Data for Modern Industry : 103(2), 143–146.
Zhou, K., Fu, C., & Yang, S. (2020). Big data driven smart energy management : From big data to big insights. 56(2016), 215–225. https://doi.org/10.1016/j.rser.2015.11.050
Refbacks
- There are currently no refbacks.
Copyright (c) 2021 Proceeding Mercu Buana Conference on Industrial Engineering
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Journal ISSN:
e-ISSN | |
2988-4284 |
Tim Editorial Office
Proceeding Mercu Buana Conference on Industrial Engineering
Program Studi Magister Teknik Industri Universitas Mercu Buana
Jl. Raya Meruya Selatan No. 1 Kembangan Jakarta Barat
Email: [[email protected]]
Website: https://publikasi.mercubuana.ac.id/index.php/mbcie/
The Journal is Indexed and Journal List Title by:
in Collaboration with: