Mengevaluasi Dampak Lingkungan Proses Destruksi Basah dan Destruksi Kering Dalam Kimia Analitik Menggunakan Metode Life Cycle Assessment

Malinda Mayanti, Rosi Herlianti, Tito Lukito

Abstract


Isu lingkungan hidup menjadi hal yang sering dibicarakan di kancah global. Laboratorium menjadi sumber penghasil limbah B3 karena labolatorium umumnya menggunakan bahan-bahan kimia yang berbahaya jika dibuang langsung ke lingkungan. Selama beberapa tahun terakhir, kimia “hijau” telah dikembangkan pada praktik berkelanjutan di laboratorium dan industri untuk membatasi penggunaan energi, pelarut, dan bahan habis pakai. Beberapa alat penilaian “kehijauan” telah dikembangkan dalam beberapa tahun terakhir, namun tidak memberikan perkiraan kuantitatif mengenai dampak lingkungan dari kimia analitik. Penilaian siklus hidup atau  Life  Cycle  Assessment dapat melengkapi alat-alat ini karena merupakan metodologi holistik untuk menilai dampak lingkungan dari berbagai tahapan metode analitik, khususnya langkah preparasi sampel. Tujuan dari penelitian ini adalah membandingkan prosedur pengujian destruksi basah atau destruksi kering yang menghasilkan dampak lingkungan lebih kecil secara keseluruhan menggunakan aplikasi simaPro 9.6.0.1. Hasil penelitian menunjukkan bahwa prosedur pengujian destruksi kering menimbulkan dampak yang lebih kecil dibandingkan prosedur pengujian destruksi basah di seluruh kategori dimana nilai persentasi dampak kerusakan pada kesehatan manusia sebesar 47%, kualitas ekosistem sebesar 48% dan sumber daya sebesar 49%. Berdasarkan nilai dampak kerusakan global warming potential, prosedur pengujian destruksi basah sebesar 7,54, hasil ini lebih besar dibandingkan dengan nilai prosedur pengujian destruksi kering sebesar 5,77.


Keywords


Environmental Impact; GWP; LCA; Laboratory Testing; Analytical Chemistry

Full Text:

PDF

References


Ahangarnokolaei, M. A., Attarian, P., Ayati, B., Ganjidoust, H., & Rizzo, L. (2021). Life cycle assessment of sequential and simultaneous combination of electrocoagulation and ozonation for textile wastewater treatment. Journal of Environmental Chemical Engineering, 9(5), 106251. https://doi.org/10.1016/j.jece.2021.106251

Badan Pusat Statistik. (2024). Laju Pertumbuhan PBD Industri Manufaktur 2023. In bps.go.id. https://www.bps.go.id/id/statistics-table/2/MTIxNiMy/laju-pertumbuhan-pdb-industri manufaktur.html

Behrooznia, L., Sharifi, M., & Hosseinzadeh-Bandbafha, H. (2020). Comparative life cycle environmental impacts of two scenarios for managing an organic fraction of municipal solid waste in Rasht-Iran. Journal of Cleaner Production, 268(2020). https://doi.org/10.1016/j.jclepro.2020.122217

Ben-Alon, L., Loftness, V., Harries, K. A., & Cochran Hameen, E. (2021). Life cycle assessment (LCA) of natural vs conventional building assemblies. Renewable and Sustainable Energy Reviews, 144(March), 110951. https://doi.org/10.1016/j.rser.2021.110951

Brilliantina, A., Adhamatika, A., Sari, E. K. N., Wijaya, R., Triardianto, D., & Sucipto, A. (2023). Penerapan Life Cycle Assessment (LCA) Untuk Mengurangi Dampak Lingkungan Pada Proses Produksi Gula Kristal Putih Di Bondowoso. JUSTER : Jurnal Sains Dan Terapan, 2(1), 85–96. https://doi.org/10.57218/juster.v2i1.474

Elvania, N. C. (2023). Isu Lingkungan Global (E. Damayanti (ed.)). Widina Media Utama.

Fertier, A., Montarnal, A., Truptil, S., & Bénaben, F. (2020). Green analytical chemistry metrics for evaluating the greenness of analytical procedures. Decision Support Systems, January, 113260. https://doi.org/10.1016/j.nhres.2023.06.006

Ganesh, K. N., Zhang, D., Miller, S. J., Rossen, K., Chirik, P. J., Kozlowski, M. C., Zimmerman, J. B., Brooks, B. W., Savage, P. E.,

Allen, D. T., & Voutchkova-Kostal, A. M. (2021). Green Chemistry: A Framework for a Sustainable Future. Organometallics. https://doi.org/10.1021/acs.organomet.1c00343

Gschrey, B., & Zeiger, B. (2015). F-Gas Regulation: Technical Advice to Member States on implementing Article 7(2). Öko-Recherche, 7(517). http://ec.europa.eu/clima/policies/f-gas/docs/151023_hfc23_byproduction_en.pdf

ISO 14040. (2009). Environmental assessment - Life cycle assessment - Principles and framework. Internation Standard Organisation, 1997, 1–20.

Kementrian Perindustrian Republik Indonesia. (2019). Industri Makanan dan Minuman Jadi Sektor Kampium. Kemenperin.Go.Id. https://kemenperin.go.id/artikel/20298/Industri-Makanan-dan-Minuman-Jadi-Sektor-Kampiun-

Liu, F., Shafique, M., & Luo, X. (2023). Literature review on life cycle assessment of transportation alternative fuels. Environmental Technology and Innovation, 32, 103343. https://doi.org/10.1016/j.eti.2023.103343

Loubet, P., Peres, C., Sonnemann, G., & Raccary, B. (2022). Evaluating the environmental impacts of analytical chemistry methods: From a critical review towards a proposal using a life cycle approach. TrAC Trends in Analytical Chemistry, 147. https://doi.org/https://doi.org/10.1016/j.trac.2022.116525

Martin-Rios, C., Demen Meier, C., & Pasamar, S. (2022). Sustainable waste management solutions for the foodservice industry: A Delphi study. Waste Management and Research, 40(9), 1412–1423. https://doi.org/10.1177/0734242X221079306

Nowak, P. M. (2023). What does it mean that “something is green”? The fundamentals of a Unified Greenness Theory. Green Chemistry, 25(12), 4625–4640. https://doi.org/10.1039/d3gc00800b

Nur Hidayah, F. (2023). Perkembangan Pengaturan Hukum Limbah Bahan Berbahaya Dan Beracun (Limbah B3) Di Indonesia. Jurnal Indonesia Sosial Teknologi, 4(02), 211–225. https://doi.org/10.59141/jist.v4i02.579

Olivieri, A. C., & Escandar, G. M. (2019). Analytical chemistry assisted by multi-way calibration: A contribution to green chemistry. Talanta, 204(April), 700–712. https://doi.org/10.1016/j.talanta.2019.06.022

Ozben, T., & Fragão-Marques, M. (2023). Chemical strategies for sustainable medical laboratories. Clinical Chemistry and Laboratory Medicine, 61(4), 642–650. https://doi.org/10.1515/cclm-2022-1157

Papaioannou, C., Geladakis, G., Kommata, V., Batargias, C., & Lagoumintzis, G. (2023). Insights in Pharmaceutical Pollution: The Prospective Role of eDNA Metabarcoding. Toxics, 11(11), 1–40. https://doi.org/10.3390/toxics11110903

Raccary, B., Loubet, P., Peres, C., & Sonnemann, G. (2022). Advances in Sample Preparation Life cycle assessment of sample preparation in analytical chemistry : a case study on SBSE and SPE techniques. Advances in Sample Preparation, 1(February), 100009. https://doi.org/10.1016/j.sampre.2022.100009

Sajid, M., & Plotka Wasylka, J. (2022). Green Analytical Chemistry Metrics: A Review. Talanta, 238(2). https://doi.org/https://doi.org/10.1016/j.talanta.2021.123046

SNI 01-2896-1998. (1998). Cara uji cemaran logam dalam makanan. Badan Standardisasi Nasional, 1–20.

Terlouw, T., Bauer, C., Rosa, L., & Mazzotti, M. (2021). Life cycle assessment of carbon dioxide removal technologies: A critical review. Energy and Environmental Science, 14(4), 1701–1721. https://doi.org/10.1039/d0ee03757e

Tobiszewski, M. (2016). Metrics for green analytical chemistry. Analytical Methods, 8(15), 2993–2999. https://doi.org/10.1039/c6ay00478d

Utami, I. M. (2019). Analisis Dampak Lingkungan Proses Pengolahan Air di IPAM “X” dengan Menggunakan Metode Life Cycle Assessment (LCA). 173.

Zimmerman, J. B., Anastas, P. T., Erythropel, H. C., & Leitner, W. (2020). Designing for a green chemistry future. Science, 367(6476), 397–400. https://doi.org/10.1126/science.aay3060


Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Proceeding Mercu Buana Conference on Industrial Engineering

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Journal ISSN:

Portal ISSNe-ISSN
2988-4284

Tim Editorial Office
Proceeding Mercu Buana Conference on Industrial Engineering

Program Studi Magister Teknik Industri Universitas Mercu Buana
Jl. Raya Meruya Selatan No. 1 Kembangan Jakarta Barat
Email: [[email protected]]
Website: https://publikasi.mercubuana.ac.id/index.php/mbcie/

The Journal is Indexed and Journal List Title by:

 

 

in Collaboration with: