Optimasi Proses Penjadwalan Mata Kuliah di Perguruan Tinggi : A Literature Review

Raden Budi Setiadi, Dita Meliana, Hernadewita Hernadewita, Hendra Hendra

Abstract


Penjadwalan mata kuliah yang efektif dan efisien di perguruan tinggi merupakan tantangan kompleks yang melibatkan banyak variabel dan kendala. Penelitian ini bertujuan untuk mengidentifikasi metode optimasi terbaik yang dapat digunakan dalam penjadwalan mata kuliah melalui analisis literatur. Dengan menggunakan metode kuantitatif, dilakukan identifikasi dan review jurnal yang relevan dari tahun 2018 hingga 2023 melalui database seperti Publish or Perish dan Google Scholar. Hasil review menunjukkan bahwa algoritma genetika merupakan metode yang paling sering digunakan dan terbukti efektif dalam menghasilkan solusi optimal untuk penjadwalan mata kuliah. Selain itu, metode optimasi lainnya seperti algoritma pewarnaan graf, algoritma meta-heuristik, dan optimasi gerombolan partikel juga digunakan dengan hasil yang signifikan. Penelitian ini menyimpulkan bahwa penggunaan sistem penjadwalan otomatis dengan algoritma optimasi dapat mengurangi kesalahan, meningkatkan efisiensi, dan memperbaiki kualitas pengajaran di perguruan tinggi. Penelitian lebih lanjut diperlukan untuk mengembangkan model penjadwalan yang lebih kompleks dengan mempertimbangkan lebih banyak variabel dan kendala yang relevan.


Keywords


course scheduling; genetic algorithms; optimization; efficiency; higher education

Full Text:

PDF

References


Bordel, B., Alcarria, R., & Robles, T. (2023). Automated Activity Scheduling Tools for Improving Learning and Evaluation of Cybersecurity Competencies in Computer Engineering Courses. International Journal of Emerging Technologies in Learning, 18(8), 4–25. https://doi.org/10.3991/ijet.v18i08.34879.

Chen, M., Werner, F., & Shokouhifar, M. (2023). Mathematical Modeling and Exact Optimizing of University Course Scheduling Considering Preferences of Professors. Axioms, 12(5). https://doi.org/10.3390/axioms12050498.

Chen, X., Yue, X. G., Man Li, R. Y., Zhumadillayeva, A., & Liu, R. (2020). Design and Application of an Improved Genetic Algorithm to a Class Scheduling System. International Journal of Emerging Technologies in Learning, 16(1), 44–59. https://doi.org/10.3991/IJET.V16I01.18225.

Díaz-Ramírez, J., Leal-Garza, C. M., & Gómez-Acosta, C. (2022). A smart school routing and scheduling problem for the new normalcy. Computers and Industrial Engineering, 168. https://doi.org/10.1016/j.cie.2022.108101

Gabriel, D. F., & Maria Pangilinan, J. A. (n.d.). Faculty Course Scheduling Optimization. American Scientific Research Journal for Engineering. http://asrjetsjournal.org/

Ge, R., & Chen, J. (2022). Analysis of College Course Scheduling Problem Based on Ant Colony Algorithm. Computational Intelligence and Neuroscience, 2022. https://doi.org/10.1155/2022/7918323.

Huang, R., Huang, J., Wang, X., Luo, Y., & Yu, J. (2019). Study of the Experimental Course Scheduling System Based on MIP Model.

Imran Hossain, S., Akhand, M. A. H., Shuvo, M. I. R., Siddique, N., & Adeli, H. (2019). Optimization of University Course Scheduling Problem using Particle Swarm Optimization with Selective Search. Expert Systems with Applications, 127, 9–24. https://doi.org/10.1016/J.ESWA.2019.02.026.

Li, T., Xie, Q., & Zhang, H. (2022). Design of College Scheduling Algorithm Based on Improved Genetic Ant Colony Hybrid Optimization. Security and Communication Networks, 2022. https://doi.org/10.1155/2022/2565639.

Li, Y., Ma, J., Xie, Z., Hu, Z., Shen, X., & Zhang, K. (2023). A Scheduling Method for Heterogeneous Signal Processing Platforms Based on Quantum Genetic Algorithm. Applied Sciences (Switzerland), 13(7). https://doi.org/10.3390/app13074428.

Mzili, T., Mzili, I., Riffi, M. E., & Dhiman, G. (2023). Hybrid Genetic and Spotted Hyena Optimizer for Flow Shop Scheduling Problem. Algorithms, 16(6). https://doi.org/10.3390/a16060265.

Nasien, D., & Andi, A. (2022). Optimization of Genetic Algorithm in Courses Scheduling. IT Journal Research and Development, 151–161. https://doi.org/10.25299/itjrd.2022.7896.

Niño, E., Ardila, C., Perez, A., Donoso, Y., Niño, E., Ardila, C., Perez, A., & Donoso, Y. (2010). A Genetic Algorithm for Multiobjective Hard Scheduling Optimization. In Communications & Control: Vol. V (Issue 5).

Nugroho, A. K., Permadi, I., & Yasifa, A. R. (2022). OPTIMIZING COURSE SCHEDULING FACULTY OF ENGINEERING UNSOED USING GENETIC ALGORITHMS. JITK (Jurnal Ilmu Pengetahuan Dan Teknologi Komputer), 7(2), 91–98. https://doi.org/10.33480/jitk.v7i2.2262.

Rivera, G., Cisneros, L., Sánchez-Solís, P., Rangel-Valdez, N., & Rodas-Osollo, J. (2020). Genetic algorithm for scheduling optimization considering heterogeneous containers: A real-world case study. Axioms, 9(1). https://doi.org/10.3390/axioms9010027.

Shao, K., Fu, H., & Wang, B. (2023). An Efficient Combination of Genetic Algorithm and Particle Swarm Optimization for Scheduling Data-Intensive Tasks in Heterogeneous Cloud Computing. Electronics (Switzerland), 12(16). https://doi.org/10.3390/electronics12163450

Shuai, C. J. (2021). Design of Automatic Course Arrangement System for Electronic Engineering Teaching Based on Monte Carlo Genetic Algorithm. Security and Communication Networks, 2021. https://doi.org/10.1155/2021/3564722.

Wang, W., Xiao, J., Feng, D., Wei, S., & Wang, Z. (2023). Multi-Objective Production and Scheduling Optimization of Offshore Wind Turbine Steel Pipe Piles Based on Improved Hesitant Fuzzy Method. Journal of Marine Science and Engineering, 11(8). https://doi.org/10.3390/jmse11081505.

Wen-Jing, W. (2018). Improved adaptive genetic algorithm for course scheduling in colleges and universities. International Journal of Emerging Technologies in Learning, 13(6), 29–42. https://doi.org/10.3991/ijet.v13i06.8442.

Xu, J. (2021). Improved Genetic Algorithm to Solve the Scheduling Problem of College English Courses. In Complexity (Vol. 2021). Hindawi Limited. https://doi.org/10.1155/2021/7252719.

Yuan, F., Li, J., Zhou, Q., & He, M. (2022). Research on Shipboard Material Scheduling Optimization Based on Improved Genetic Algorithm. Wireless Communications and Mobile Computing, 2022. https://doi.org/10.1155/2022/3451408.

Zhang, Q. (2022). An optimized solution to the course scheduling problem in universities under an improved genetic algorithm. Journal of Intelligent Systems, 31(1), 1065–1073. https://doi.org/10.1515/jisys-2022-0114.




DOI: http://dx.doi.org/10.22441/MBCIE.2024.030

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Proceeding Mercu Buana Conference on Industrial Engineering

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Journal ISSN:

Portal ISSNe-ISSN
2988-4284

Tim Editorial Office
Proceeding Mercu Buana Conference on Industrial Engineering

Program Studi Magister Teknik Industri Universitas Mercu Buana
Jl. Raya Meruya Selatan No. 1 Kembangan Jakarta Barat
Email: [[email protected]]
Website: https://publikasi.mercubuana.ac.id/index.php/mbcie/

The Journal is Indexed and Journal List Title by:

 

 

in Collaboration with: