Systematic Literature Review of Digital Transformation KPIs in Industry 4.0 for Smart Manufacturing
Abstract
Digitalisasi menghadirkan revolusi di sektor manufaktur yang mengacu pada transisi dari teknologi tradisional ke digital yang membentuk bagian integral dari Industri 4.0. Saat ini, inovasi digital terkait erat dengan "keberlanjutan" perusahaan. Smart Manufacturing dianggap sebagai paradigma baru yang membuat pekerjaan lebih cerdas dan lebih terhubung, menghadirkan kecepatan dan fleksibilitas melalui pengenalan inovasi digital. Smart Manufacturing adalah implementasi fisik dan operasional dari sebagian besar transformasi digital di sektor industri dan Digital Transformation KPIs adalah alat untuk mengukur keberhasilan implementasi tersebut. Penelitian ini dilakukan melalui pendekatan tinjauan pustaka sistematis menggunakan metode PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) untuk memastikan proses identifikasi, seleksi, dan analisis artikel yang transparan dan replicable. Data dari artikel-artikel tersebut kemudian dianalisis menggunakan perangkat lunak VOSViewer untuk memvisualisasikan hubungan antar kata kunci, penulis, atau konsep, sehingga memungkinkan identifikasi tren penelitian, klaster topik, serta area riset yang kurang terjamah. Tujuan artikel ini adalah untuk menyajikan literatur relevan yang membahas Digital Transformation KPIs di Industry 4.0 terhadap Smart Manufacturing dan mengidentifikasi tantangan utama, dengan menyajikan hasil tinjauan pustaka dari berbagai jurnal. Sebanyak 35 artikel dimasukkan dalam penelitian ini yang diterbitkan antara 2019 dan 2025. Artikel diidentifikasi berdasarkan tahun, negara, publikasi dan objek penelitian. Hasilnya menunjukkan bahwa Key Performance Indicators (KPIs) memainkan peran sentral dan krusial dalam keberhasilan implementasi Transformasi Digital dalam Industri 4.0 untuk Smart Manufacturing, khususnya di sektor manufaktur, dengan tujuan utama untuk meningkatkan efisiensi operasional, keberlanjutan, dan kinerja bisnis secara keseluruhan.
Keywords
Full Text:
PDFReferences
Aldoseri, A., Al-Khalifa, K. N., & Hamouda, A. M. (2024). Methodological Approach to Assessing the Current State of Organizations for AI-Based Digital Transformation. Applied System Innovation, 7(1). https://doi.org/10.3390/asi7010014
Bianchini, A., Savini, I., Andreoni, A., Morolli, M., & Solfrini, V. (2024). Manufacturing Execution System Application within Manufacturing Small–Medium Enterprises towards Key Performance Indicators Development and Their Implementation in the Production Line. Sustainability (Switzerland) , 16(7). https://doi.org/10.3390/su16072974
Bican, P. M., & Brem, A. (2020). Digital Business Model, Digital Transformation, Digital Entrepreneurship: Is there a sustainable “digital”? Sustainability (Switzerland), 12(13), 1–15. https://doi.org/10.3390/su12135239
Cijan, A., Jenič, L., Lamovšek, A., & Stemberger, J. (2019). How digitalization changes the workplace. Dynamic Relationships Management Journal, 8(1), 3–12. https://doi.org/10.17708/DRMJ.2019.v08n01a01
Contini, G., & Peruzzini, M. (2022). Sustainability and industry 4.0: Definition of a set of key performance indicators for manufacturing companies. In Sustainability. mdpi.com. https://www.mdpi.com/2071-1050/14/17/11004
Contini, G., Peruzzini, M., Bulgarelli, S., & Bosi, G. (2023). Developing key performance indicators for monitoring sustainability in the ceramic industry: The role of digitalization and industry 4.0 technologies. In Journal of Cleaner Production. Elsevier. https://www.sciencedirect.com/science/article/pii/S095965262301822X
El Kihel, Y., Zouggar Amrani, A., Ducq, Y., Amegouz, D., & Lfakir, A. (2023). Methodology combining industry 4.0 technologies and KPI’s reliability for supply chain performance. International Journal of Computer Integrated Manufacturing, 36(8), 1128–1152. https://doi.org/10.1080/0951192X.2022.2162605
Engenharia, E. De. (2024). José Pedro Ferreira Gomes Productivity Data Digitalization and Integration in Plant Management Software José Pedro Ferreira Gomes Productivity Data Digitalization and Integration in Plant Management Software.
Fabac, R. (2022). Digital Balanced Scorecard System as a Supporting Strategy for Digital Transformation. Sustainability (Switzerland), 14(15). https://doi.org/10.3390/su14159690
Felice, F. De, Luca, C. De, Petrillo, A., Forcina, A., Angel, M., Barrios, O., & Baffo, I. (2025). The Role of Digital Transformation in Manufacturing : Discrete Event Simulation to Reshape Industrial Landscapes. 1–35.
Frank, A. G., Dalenogare, L. S., & Ayala, N. F. (2019). Industry 4.0 technologies: Implementation patterns in manufacturing companies. International Journal of Production Economics, 210(January), 15–26. https://doi.org/10.1016/j.ijpe.2019.01.004
Gadekar, R., Sarkar, B., & Gadekar, A. (2022). Key performance indicator based dynamic decision-making framework for sustainable Industry 4.0 implementation risks evaluation: reference to the Indian manufacturing industries. Annals of Operations Research, 318(1), 189–249. https://doi.org/10.1007/s10479-022-04828-8
Halim, H., Kesuma, T. M., & Siregar, M. R. (2023). Digital transformation strategy to optimize company performance. In Jurnal Manajemen Bisnis …. researchgate.net. https://www.researchgate.net/profile/Hendra-Halim-4/publication/376078186_Digital_Transformation_Strategy_to_Optimize_Company_Performance/links/656916d4b86a1d521b1e2334/Digital-Transformation-Strategy-to-Optimize-Company-Performance.pdf
Huang, Z., Shen, Y., Li, J., Fey, M., & Brecher, C. (2021). A survey on AI-driven digital twins in industry 4.0: Smart manufacturing and advanced robotics. In Sensors. mdpi.com. https://www.mdpi.com/1424-8220/21/19/6340
Janković, N., Nikolić, I., & Rajković, T. (2024). Digital Transformation and Key Performance Indicators in Manufacturing: A Comprehensive Literature Review. Proceedings Book of Abstract. https://rfos.fon.bg.ac.rs/handle/123456789/2775
Jeereddy, S., Kennedy, K., Duffy, E., Walker, A., & Vorster, B. (2019). Machine Learning Use Cases for Smart Manufacturing KPIs. Proceedings - 2019 IEEE International Conference on Big Data, Big Data 2019, 4375–4380. https://doi.org/10.1109/BigData47090.2019.9006539
Kovács, B. (2022). Scalable ML Methods to Optimize KPIs in Real-World Manufacturing Processes. IJCAI International Joint Conference on Artificial Intelligence, d, 5857–5858. https://doi.org/10.24963/ijcai.2022/831
Levkovskyi, B., Hinrichs, M., Betzwieser, B., & Utesch, M. C. (2021). Companies in transition: Understanding how the digital transformation affects business processes and their key performance indicators. 27th Annual Americas Conference on Information Systems 2021, 0–10.
Marinagi, C., Reklitis, P., Trivellas, P., & Sakas, D. (2023). The impact of industry 4.0 technologies on key performance indicators for a resilient supply chain 4.0. In Sustainability. mdpi.com. https://www.mdpi.com/2071-1050/15/6/5185
Panchal, G., Clegg, B., Koupaei, E. E., Masi, D., & ... (2024). Digital transformation and business intelligence for a SME: systems thinking action research using PrOH modelling. Procedia Computer …. https://www.sciencedirect.com/science/article/pii/S1877050924001807
Pepe, C., & Zanoli, S. M. (2024). Digitalization, Industry 4.0, Data, KPIs, Modelization and Forecast for Energy Production in Hydroelectric Power Plants: A Review. In Energies. mdpi.com. https://www.mdpi.com/1996-1073/17/4/941
Pour, P. D., Ahmed, A. A., Nazzal, M. A., & Darras, B. M. (2023). An industry 4.0 technology selection framework for manufacturing systems and firms using fuzzy AHP and fuzzy TOPSIS methods. In Systems. mdpi.com. https://www.mdpi.com/2079-8954/11/4/192
Priatna, D. K., Roswinna, W., Limakrisna, N., & ... (2025). Optimizing Smart Manufacturing Processes and Human Resource Management through Machine Learning Algorithms. … Journal of Industrial …. https://ijiemjournal.uns.ac.rs/index.php/ijiem/article/view/1529
Schumacher, A., & Sihn, W. (2020). Development of a monitoring system for implementation of industrial digitalization and automation using 143 key performance indicators. Procedia CIRP, 93(March), 1310–1315. https://doi.org/10.1016/j.procir.2020.03.012
Şener, U., Gökalp, E., & Eren, P. E. (2022). Intelligent digital transformation strategy management: Development of a measurement framework. … Systems in Digital Transformation …. https://doi.org/10.1007/978-3-031-16598-6_4
Siedler, C., Langlotz, P., & Aurich, J. C. (2020). Modeling and assessing the effects of digital technologies on KPIs in manufacturing systems. Procedia CIRP. https://www.sciencedirect.com/science/article/pii/S2212827120305394
Sishi, M., & Telukdarie, A. (2023). Digital Technologies and Artificial Intelligence for Optimized Key Performance Indicators. Ml, 58–68. https://doi.org/10.46254/sa02.20210032
Somohano-Rodríguez, F. M., & Madrid-Guijarro, A. (2022). Do industry 4.0 technologies improve Cantabrian manufacturing smes performance? The role played by industry competition. Technology in Society, 70(June), 102019. https://doi.org/10.1016/j.techsoc.2022.102019
Sufian, A. T., Abdullah, B. M., & Miller, O. J. (2025). Smart Manufacturing Application in Precision Manufacturing. In Applied Sciences. mdpi.com. https://www.mdpi.com/2076-3417/15/2/915
Tambare, P., Meshram, C., Lee, C. C., Ramteke, R. J., & ... (2021). Performance measurement system and quality management in data-driven Industry 4.0: A review. In Sensors. mdpi.com. https://www.mdpi.com/1424-8220/22/1/224
Tambare, P., Meshram, C., Lee, C. C., Ramteke, R. J., & Imoize, A. L. (2022). Performance measurement system and quality management in data‐driven industry 4.0: A review. Sensors, 22(1), 1–25. https://doi.org/10.3390/s22010224
Taouab, O., & Issor, Z. (2019). Firm Performance: Definition and Measurement Models. European Scientific Journal ESJ, 15(1), 93–106. https://doi.org/10.19044/esj.2019.v15n1p93
Trubetskaya, A., Ryan, A., & Murphy, F. (2023). An implementation model for digitisation of visual management to develop a smart manufacturing process. International Journal of Lean Six Sigma, 15(8), 32–49. https://doi.org/10.1108/IJLSS-07-2022-0156
Žižek, S. Š., Nedelko, Z., Mulej, M., & Čič, Ž. V. (2020). Key performance indicators and industry 4.0–A socially responsible perspective. In Naše gospodarstvo/Our …. sciendo.com. https://doi.org/10.2478/ngoe-2020-0015
DOI: http://dx.doi.org/10.22441/MBCIE.2025.34445
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Proceeding Mercu Buana Conference on Industrial Engineering

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Journal ISSN:
![]() | e-ISSN |
---|---|
2988-4284 |
Tim Editorial Office
Proceeding Mercu Buana Conference on Industrial Engineering
Program Studi Magister Teknik Industri Universitas Mercu Buana
Jl. Raya Meruya Selatan No. 1 Kembangan Jakarta Barat
Email: [[email protected]]
Website: https://publikasi.mercubuana.ac.id/index.php/mbcie/
The Journal is Indexed and Journal List Title by:
in Collaboration with: