Implementation of Bayesian inference MCMC algorithm in phylogenetic analysis of Dipterocarpaceae family

Mirna Yunita, Rachmat Muwardi, Zendi Iklima

Abstract


Dipterocarpaceae is one of the most prominent plant families, with more than 500 members of species. This family mostly used timber plants for housing, making ships, decking, and primary materials for making furniture. In Indonesia, many Dipterocarpaceae species have morphological similarities and are challenging to recognize in the field. As a result, the classification process becomes difficult and even results are inconsistent when viewed only from the morphology. This research will analyze the phylogenetic tree of Dipterocarpaceae based on the chloroplast matK gene. The aim of the research is to classify the phylogenetics tree of Dipterocarpaceae family using Bayesian inference algorithm. This research used the chloroplast gene instead of morphological characters which has more accurate. The analysis steps are collecting data, modifying the structure sequence name, sequence alignment, constructing tree by using Markov Chain Monte Carlo (MCMC) from Bayesian Inference, and evaluating and analyzing the phylogenetic tree. The results showed that the tree constructed based on the gene is different from the tree based on morphology. Based on the morphological, Dipterocarpus should be in the Dipterocarpeae tribe but based on the similarity of its genes, Dipterocarpus is more similar to the Shoreae tribe.  

 


Keywords


Dipterocarpaceae, Phylogenetic, Bayesian inference, Markov Chain Monte Carlo

Full Text:

PDF


DOI: http://dx.doi.org/10.22441/sinergi.2023..1.004

Refbacks

  • There are currently no refbacks.


gd toto

SINERGI
Published by:
Fakultas Teknik Universitas Mercu Buana
Jl. Raya Meruya Selatan, Kembangan, Jakarta 11650
Tlp./Fax: +62215871335
p-ISSN: 1410-2331
e-ISSN: 2460-1217
Journal URL: http://publikasi.mercubuana.ac.id/index.php/sinergi
Journal DOI: 10.22441/sinergi

Creative Commons License

Journal by SINERGI is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

Web
Analytics Made Easy - StatCounter
View My Stats

The Journal is Indexed and Journal List Title by:

 

 

POSKOBET

POSKOBET