A fault diagnosis system for CNC hydraulic machines: a conceptual framework

Fajar Anzari, Winnie Septiani, Dedy Sugiarto, Martino Luis


The fault diagnosis process in Computer Numerical Control (CNC) hydraulic machines for steel processing relies on skills, experiences, and maintenance technicians' understanding of the machine. The problem is many junior maintenance technicians are inexperienced and unskilled. This paper proposes a conceptual framework for a fault diagnosis system for the CNC hydraulic machine to help a maintenance technician in a fault diagnosis process. The framework uses association rule mining to discover hidden association patterns between fault symptoms and causes from historical machine fault data. The framework has consisted of data standardization, knowledge acquisition, and a model of the fault diagnosis system. The data standardization aims to make the data ready to be mined by assigning a fault tag for each record of historical fault data. The tagged repair records are used to produce symptoms–cause associative knowledge. The produced knowledge is refined by corrective actions acquired from expert knowledge. The knowledge is then stored in the fault knowledge database in the form of IF-THEN rules. The reasoning machine is developed to map the fault symptoms as IF and the causes as THEN. Production operators can fill in the fault symptoms by choosing the standardized fault symptom tag. When a maintenance technician reviews a fault report, the system, through a reasoning machine, will access the appropriate IF-THEN rules based on the fault symptoms that the production operator has filled in. The system concludes the fault cause and recommends suitable corrective action.


Association rule; CNC; Diagnosis; Fault; Framework; Hydraulic; Mining;

Full Text:


DOI: http://dx.doi.org/10.22441/sinergi.2023.1.008


  • There are currently no refbacks.

Published by:
Fakultas Teknik Universitas Mercu Buana
Jl. Raya Meruya Selatan, Kembangan, Jakarta 11650
Tlp./Fax: +62215871335
p-ISSN: 1410-2331
e-ISSN: 2460-1217
Journal URL: http://publikasi.mercubuana.ac.id/index.php/sinergi
Journal DOI: 10.22441/sinergi

Creative Commons License

Journal by SINERGI is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

Analytics Made Easy - StatCounter
View My Stats

The Journal is Indexed and Journal List Title by: