Image Segmentation in Aerial Imagery: A Review

Ade Purwanto, Dewi Habsari Budiarti, Fithri Nur Purnamastuti, Irfansyah Yudhi Tanasa, Yomi Guno, Aris Surya Yunata, Mukti Wibowo, Asyaraf Hidayat, Dede Dirgahayu

Abstract


The problem of distinguishing objects has plagued researchers for many years because of low accuracy compared to human eyes’ capability. In the last decade, the use of Machine Learning in aerial imagery data processing has multiplied, with the technology behind it has also developed exponentially. One of those technologies is image-based object identification, which relies heavily upon data computation. To reduce the computational load, various data segmentation algorithm was developed. This study is focused on reviewing the various image segmentation technology in aerial imagery for image recognition. Literature from as far as 1981 from various journals and conferences worldwide was reviewed. This review examines specific research questions to analyze image segmentation research over time and the challenges researchers face with each method. Machine Learning has gained popularity among segmentation methods. However, Deep Learning has been aggressively put an essential role in it by overcoming many of its weaknesses. The advanced algorithm used in Deep Learning to process the segmentation may drive more efficient and accurate data processing. 


Keywords


Aerial Imagery; CNN; Image Processing; Image Segmentation; Machine Learning; Review;

Full Text:

PDF


DOI: http://dx.doi.org/10.22441/sinergi.2023.3.006

Refbacks

  • There are currently no refbacks.


SINERGI
Published by:
Fakultas Teknik Universitas Mercu Buana
Jl. Raya Meruya Selatan, Kembangan, Jakarta 11650
Tlp./Fax: +62215871335
p-ISSN: 1410-2331
e-ISSN: 2460-1217
Journal URL: http://publikasi.mercubuana.ac.id/index.php/sinergi
Journal DOI: 10.22441/sinergi

Creative Commons License

Journal by SINERGI is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

Web
Analytics Made Easy - StatCounter
View My Stats

The Journal is Indexed and Journal List Title by: