Stress-Strain Behavior and Residual Strength of Petobo Sand with Variable Fines Content after the 2018 Palu Liquefaction
Abstract
Keywords
References
A. P. Gallant et al., “The Sibalaya flowslide initiated by the 28 September 2018 MW 7.5 Palu-Donggala, Indonesia earthquake,” Landslides, vol. 17, no. 8, pp. 1925–1934, 2020.
A. Jalil, T. F. Fathani, I. Satyarno, and W. Wilopo, “Liquefaction in Palu: the cause of massive mudflows,” Geoenvironmental Disasters, vol. 8, no. 1, 2021.
A. Rahayu, I. Uno, N. Hidayat, A. Dwijaka, and M. Yusuf, “Potential of Liquifaction at Nasanapura Hospital Petobo Village Palu City,” IOP Conf. Ser. Earth Environ. Sci., vol. 1075, no. 1, 2022.
M. Simatupang, R. S. Edwin, and Sulha, “Liquefaction severity assessment for the Anutapura Medical Center Area of Palu-Indonesia,” IOP Conf. Ser. Earth Environ. Sci., vol. 1195, no. 1, 2023.
L. E. Widodo, S. H. Prassetyo, G. M. Simangunsong, and I. Iskandar, “Role of the confined aquifer in the mechanism of soil liquefaction due to the 7.5 Mw earthquake in Palu (Indonesia) on 28 September 2018,” Hydrogeol. J., vol. 30, no. 6, pp. 1877–1898, 2022.
T. C. Upomo, M. Chang, R. Kusumawardani, G. A. Prayitno, C.-P. Kuo, and U. Nugroho, “Assessment of Petobo Flowslide Induced by Soil Liquefaction during 2018 Palu–Donggala Indonesian Earthquake,” Sustainability, vol. 15, no. 6, p. 5371, Mar. 2023.
V. Jayakrishnan, K. S. Beena, and C. B. Blayil, “Studying the Impact of Continuous and Multiple Earthquake Ground Motions on Pore Pressure in Saturated Sandy Deposits,” Geotech. Geol. Eng., vol. 42, no. 6, pp. 5375–5387, Aug. 2024.
K. O. Cetin and H. T. Bilge, “Recent advances in seismic soil liquefaction engineering,” Evol. Geotech - 25 Years Innov., no. 2001, pp. 18–42, 2022.
L. Jradi, B. S. El Dine, J. C. Dupla, and J. Canou, “Influence of low fines content on the liquefaction resistance of sands,” Eur. J. Environ. Civ. Eng., vol. 26, no. 12, pp. 6012–6031, 2022.
A. Ghorbani, A. Eslami, and M. Nezhad Moghadam, “Effect of non-plastic silt on liquefaction susceptibility of marine sand by transparent laminar shear box in shaking table,” Int. J. Geotech. Eng., vol. 00, no. 00, pp. 1–13, 2020.
H. Artati, W. Pawirodikromo, P. Rahardjo, and L. Makrup, “Effect of Fines Content on Liquefaction Resistance During Steady-State Conditions,” Int. J. GEOMATE, vol. 25, no. 109, pp. 18–28, 2023.
S. Gobbi, P. Reiffsteck, L. Lenti, M. P. S. d’Avila, and J. F. Semblat, “Liquefaction triggering in silty sands: effects of non-plastic fines and mixture-packing conditions,” Acta Geotech., vol. 17, no. 2, pp. 391–410, 2022.
M. Goudarzy, D. Sarkar, and T. Wichtmann, “Influence of plastic fines content on the liquefaction susceptibility of sands: cyclic loading,” Acta Geotech., vol. 17, no. 11, pp. 4977–4988, 2022.
C. P. Polito, J. R. Martin, and E. L. D. Sibley, “The Effect of Non-Plastic Fines Content on Pore Pressure Generation Rates in Cyclic Triaxial and Cyclic Direct Simple Shear Tests,” Eng, vol. 5, no. 4, pp. 2410–2427, 2024.
H. Saeed, Z. Nalbantoglu, and E. Uygar, “Liquefaction susceptibility of beach sand containing plastic fines,” Mar. Georesources Geotechnol., vol. 41, no. 1, pp. 1–13, 2023.
G. Tomasello and D. D. Porcino, “Energy-Based Pore Pressure Generation Models in Silty Sands under Earthquake Loading,” Geosci., vol. 14, no. 6, 2024.
X. Wei, J. Yang, and Z.-X. Yang, “Characterizing the Liquefaction Potential and Pore Pressure Generation of Silty Sands through the Energy-Based Approach in the Framework of Critical State Soil Mechanics,” J. Geotech. Geoenvironmental Eng., vol. 150, no. 10, Oct. 2024.
S. Ćorluka, D. Rakić, N. Živanović, K. Djoković, and T. Đurić, “A Correlation Relating the Residual Strength Parameters to the Proportions of Clay Fractions and Plasticity Characteristics of Overburden Sediments from the Open-Pit Mine Drmno,” Appl. Sci., vol. 14, no. 22, 2024.
Z. Li, S. Escoffier, and P. Audrain, “Study on the effects of a low amount of non-plastic fines on soil liquefaction by dynamic centrifuge modeling,” Soil Dyn. Earthq. Eng., vol. 195, p. 109400, Aug. 2025.
G. Chen et al., “New paradigm for sand liquefaction under cyclic loadings,” Eng. Geol., vol. 351, p. 108041, May 2025.
M.-A. Abdul-Khader and S. Jeong, “Behavior of Weathered Soil under Combined Undrained Cyclic-Monotonic Loading,” Int. J. Geomech., vol. 21, no. 4, Apr. 2021.
I. D. Gates and M. Ghayoomi, “Residual Strength of Liquefied Soil: The Effect of Induced Partial Saturation,” Geotech. Test. J., vol. 45, no. 4, pp. 855–876, Jul. 2022.
A. Papadopoulou and T. Tika, “Monotonic and cyclic behaviour of sand-silt mixtures through the equivalent state parameter,” in E3S Web of Conferences, 2024, pp. 544, 14014.
A. V. da Fonseca, D. Cordeiro, and F. Molina-Gómez, “Recommended Procedures to Assess Critical State Locus from Triaxial Tests in Cohesionless Remoulded Samples,” Geotechnics, vol. 1, no. 1, pp. 95–127, 2021.
Y. Wu, M. Hyodo, and J. Cui, “On the critical state characteristics of methane hydrate-bearing sediments,” Mar. Pet. Geol., vol. 116, no. March, p. 104342, 2020.
H. B. K. Nguyen, M. M. Rahman, and A. B. Fourie, “How particle shape affects the critical state, triggering of instability and dilatancy of granular materials - Results from a DEM study,” Geotechnique, vol. 71, no. 9, pp. 749–764, 2021.
G. Wanli and C. Zhengyin, “Study on the critical state of a unique silty sand,” Granul. Matter, vol. 24, no. 1, pp. 1–8, 2022.
Z. Fan, R. Cudmani, S. Chrisopoulos, X. Xiong, M. Sun, and Y. Yuan, “Experimental study on the reliquefaction behavior of saturated sand deposits under distinct loading frequencies,” Soil Dyn. Earthq. Eng., vol. 190, p. 109114, Mar. 2025.
H. B. Mason et al., “East Palu Valley Flowslides Induced by the 2018 MW 7.5 Palu-Donggala Earthquake.,” Geomorphology, vol. East Palu, 2020.
J. Montgomery, J. Wartman, A. N. Reed, A. P. Gallant, D. Hutabarat, and H. B. Mason, “Field reconnaissance data from GEER investigation of the 2018 M W 7 . 5 Palu-Donggala earthquake,” Data Br., vol. 34, p. 106742, 2021.
Y. Yang, B. Yang, C. Su, and J. Ma, “Application of Residual Shear Strength Predicted by Artificial Neural Network Model for Evaluating Liquefaction-Induced Lateral Spreading,” Adv. Civ. Eng., vol. 2020, 2020.
M. Cueva, X. Kang, S. Wang, E. Soranzo, and W. Wu, “Unveiling the role of saturation and displacement rate in the transition from slow movement to catastrophic failure in landslides,” Eng. Geol., vol. 352, no. April, p. 108042, 2025.
A. Jalil, T. F. Fathani, I. Satyarno, and W. Wilopo, “A study on the liquefaction potential in banda aceh city after the 2004 sumatera earthquake,” Int. J. GEOMATE, vol. 18, no. 65, pp. 147–155, 2020.
Refbacks
- There are currently no refbacks.
SINERGI
Published by:
Fakultas Teknik Universitas Mercu Buana
Jl. Raya Meruya Selatan, Kembangan, Jakarta 11650
Tlp./Fax: +62215871335
p-ISSN: 1410-2331
e-ISSN: 2460-1217
Journal URL: http://publikasi.mercubuana.ac.id/index.php/sinergi
Journal DOI: 10.22441/sinergi
Journal by SINERGI is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License
The Journal is Indexed and Journal List Title by:











