CLASSIFICATION OF KIDNEY DISEASE USING GENETIC MODIFIED KNN AND ARTIFICIAL BEE COLONY ALGORITHM

Ardina Ariani, Samsuryadi Samsuryadi

Abstract


The health care system is currently improving with the development of intelligent artificial systems in detecting diseases. Early detection of kidney disease is essential by recognizing symptoms to prevent more severe damages. This study introduces a classification system for kidney diseases using the Artificial Bee Colony (ABC) algorithm and genetically modified K-Nearest Neighbor (KNN). ABC algorithm is used as a feature selection to determine relevant symptoms used in influencing kidney disease and Genetic modified KNN used for classification. This research consists of 3 stages: pre-processing, feature selection, and classification. However, it focuses on the pre-processing stage of chronic kidney disease using 400 records with 24 attributes for the feature selection and classification. Kidney disease data is classified into two classes, namely chronic kidney disease and not chronic kidney disease. Furthermore, the performance of the proposed method is compared with other methods. The result showed that an accuracy of 98.27% was obtained by dividing the dataset into 280 training and 120 test data.


Keywords


Artificial Bee Colony; Classification of Kidney Disease; Feature Selection; Genetic Modified K-Nearest Neighbor;

Full Text:

PDF


DOI: http://dx.doi.org/10.22441/sinergi.2021.2.009

Refbacks

  • There are currently no refbacks.


SINERGI
Published by:
Fakultas Teknik Universitas Mercu Buana
Jl. Raya Meruya Selatan, Kembangan, Jakarta 11650
Tlp./Fax: +62215871335
p-ISSN: 1410-2331
e-ISSN: 2460-1217
Journal URL: http://publikasi.mercubuana.ac.id/index.php/sinergi
Journal DOI: 10.22441/sinergi

Creative Commons License

Journal by SINERGI is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

Web
Analytics Made Easy - StatCounter
View My Stats

The Journal is Indexed and Journal List Title by: