Implementasi Metode CNN Computer Vision Dalam Identifikasi Tipe Kerusakan Pohon Berbasis FHM

Rahmat Safe'i, Zuhri Nopriyanto, Rico Andrian, Kurnia Muludi

Abstract


Identifikasi tipe kerusakan pohon pada Forest Health Monitoring hingga saat ini masih bersifat manual, yaitu menggunakan penglihatan manusia dalam penerapannya. Teknologi Informasi yang kini berkembang pesat dapat di rasakan hingga ke berbagai media penerapan ilmu pengetahuan, dengan demikian terciptalah salah satu solusi dalam memecahkan masalah penelitian kasus identifikasi tipe kerusakan pohon yaitu dengan penggunaan metode computer vision dalam upaya memudahkan pekerjaan dalam ilmu kehutanan. Tujuan penelitian ini adalah untuk menerapkan computer vision dalam mengidentifikasi tipe kerusakan pohon berbasis Forest Health Monitoring. Tahapan penelitian yang dilakukan dalam penelitian ini adalah pengumpulan dataset, proses preprocessing, pembagian dataset, pelatihan model, pengujian model dan terakhir adalah evaluasi model. Hasil penelitian ini berupa model (prototype) identifikasi tipe kerusakan pohon dalam 4 kategori yaitu, LeNet-5 Colab, LeNet-5 Tesla, MobileNet Colab, dan MobileNet Tesla. Persentase identifikasi model bervariasi, dimana pada kelas tertentu model dapat mengidentifikasi dengan benar dan dikelas lainnya masih ada beberapa identifikasi model yang kurang optimal, disebabkan oleh kemiripan beberapa bentuk dataset dalam segi visual komputer. Penelitian penerapan computer vision dalam identifikasi kerusakan pohon berbasis Forest Health Monitoring berhasil dilakukan dengan menghasilkan dua model (prototype) dalam identifikasi kerusakan pohon yang nilai akurasinya mencapai angka 89.99% pada model LeNet-5 dan 99.06% pada model MobileNet dengan tools yang digunakan adalah Jupyter notebook pada Nvidia Tesla K20 (offline) dan Google Colab (online).

Keywords


Forest Health Monitoring; Computer Vision; Kerusakan Pohon; Convolutional Neural Network

Full Text:

PDF

References


B Abimanyu, R. Safe'i, “Application of Forest Health Monitoring Method in Assessing Tree Damage in Metro Urban Forests”, Bandar Lampung: Jurnal Sylvia Lestari, 2019.

Safe'i, R, “Kajian Kesehatan Hutan dalam Pengelolaan Hutan Rakyat di Provinsi Lampung”, Bogor: Institut Pertanian Bogor, 2015.

S. Hershey, S. Chaudhuri, D. P. W. Ellis, J. F. Gemmeke, A. Jansen,R. C. Moore, M. Plakal, D. Platt, R. A. Saurous, B. Seybold, M. Slaney,R. J. Weiss, and W. Wilson, ‘‘CNN architectures for large-scale audio classification,” in Proc. Int. Conf. Acoust. Speech Signal Process., Mar. 2017, pp.131–135.

Y. Wang, J. Yan, Q. Sun, Z. Yang “A MobileNets Convolutional Neural Network for GIS Partial Discharge Pattern Recognition in the Ubiquitous Power Internet of Things Context: Optimization, Comparison, and Application” in IEEE Digital Object Identifier, Vol 7, Oct 2019, doi: 10.1109/ACCESS.2019.2946662.

S. A. Alexander, “Forest Health Monitoring: Field Methods Guide”, Las Vegas (US): Environmental Monitoring Systems, 1995.

Y. Feng, T. Yang and Y. Niu, “Subpixel Computer Vision Detection Based on Wavelet Transform,” in IEEE Digital Object Identifier, Vol 8, May 2020, doi: 10.1109/ACCESS.2020.2991846.

K. Neeraj, P. N., “Leafsnap: A Computer Vision System for Automatic Plant Species Identification”, Berlin: Springer-Verlag, 2012.

K. B. Meena and V. Tyagi, ‘‘A deep learning-based method for image splicing detection,’’ in Proc. J. Phys., Conf., vol. 1714, no. 1, Art. no. 012038, 2021.

A. Angulo, V. F., “Road Damage Detection Acquisition System Based on Deep Neural Network for Physical Asset Management”, Mexico: MICAI, 2019.

L. Ruotsalainen, A. M. M. Makela, J. Rantanen, and N. Sokolova, “Improving Computer Vision-Based Perception for Collaborative Indoor Navigation,” in IEEE SENSORS JURNAL VOL 22 NO 6, 15 March, 2022.

Babatunde, Hezekiah, O., Armstrong, L., Leng, J., & Diepeveen, D., ”A Survey of Computer-Based Vision Systems for Automatic Identification of Plant Species”. Journal of Agricultural Informatics, 61-71. 2015

Md. R. Islam, A. Matin, “Detection of COVID 19 from CT image by the novel Lenet-5 CNN Architecture”, 23rd ICCIT (International Conference on Computer and Information Technology), pp-19-21, Dec 2020.

N. Kronenwett and G. F. Trommer, “Multi sensor pedestrian navigation system for indoor and outdoor environments,” in Proc. DGON Inertial Sensors Syst. (ISS), pp. 1–21, Sep. 2019, doi:10.1109/ISS46986.2019.8943692.]

Z. Arham, and W, N. I. “Pembangunan Virtual Mirror Eyeglasses Menggunakan Teknologi Augmented Reality”. Komputa: Jurnal Ilmiah Komputer Dan Informatika, 1(2), 79–84, 2012.

R.A. Hazarika, A. Abraham, D. Kandar and A.K. Maji, “An Improved LeNet-Deep Neural Network Model for Alzheimer’s Disease Classification Using Brain Magnetic Resonance Images,” in IEEE Digital Object Identifier, Vol 8, Nov 2021, doi: 10.1109/ACCESS.2021.3131741.

M. Alwanda, R. Ramadhan, and D. Alamsyah, “Implementasi Metode Convolutional Neural Network Menggunakan Arsitektur LeNet-5 untuk Pengenalan Doodle, Algoritme vol 1, 2020.

K. Kadam, S. Ahirrao, K.Kotecha, S. Sahu “Detection and Localization of Multiple Image Splicing Using MobileNet V1”, in IEEE Digital Object Identifier, Vol 9, Nov 2021.

Elfatimi E,Eryigit R, Elfatimi L, “Beans Leaf Diseases Classification Using MobileNets Models”, IEEE Digital Object Identifier, Vol 10, Jan 2022.




DOI: http://dx.doi.org/10.22441/incomtech.v13i1.16022

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Publisher Address:
Magister Teknik Elektro, Universitas Mercu Buana
Jl. Meruya Selatan 1, Jakarta 11650
Phone (021) 31935454/ 31934474
Fax (021) 31934474
Email: [email protected]
Website of Master Program in Electrical Engineering
http://mte.pasca.mercubuana.ac.id

pISSN: 2085-4811
eISSN: 2579-6089
Jurnal URL: http://publikasi.mercubuana.ac.id/index.php/Incomtech
Jurnal DOI: 10.22441/incomtech

Lisensi Creative Commons
Ciptaan disebarluaskan di bawah Lisensi Creative Commons Atribusi-NonKomersial 4.0 Internasional

.

Web
Analytics Made Easy - StatCounter
View My Stats

The Journal is Indexed and Journal List Title by: