Implementasi Convolutional Neural Network dengan Transfer Learning Inception-V3 untuk Membatasi Web Pornografi
Abstract
Penyebaran pornografi melalui internet di masyarakat masih marak hingga saat ini dan dapat menimbulkan dampak negatif bagi penggunanya. Web pornografi semakin hari semakin berkembang dan bervariasi, demikian juga metode untuk mengaksesnya. Sistem yang efektif untuk membatasi peredaran pornografi menjadi kebutuhan penting untuk melengkapi sistem yang sudah ada. Convolutional Neural Network (CNN) merupakan sebuah algoritma klasifikasi yang dapat dimanfaatkan untuk mendeteksi web pornografi berdasarkan gambar yang ada pada halaman web tersebut. Algoritma CNN dipilih karena kemampuannya yang menjanjikan dalam mengekstraksi fitur gambar. Selain itu dengan mengimplementasikan transfer learning, proses pembuatan model bisa dilakukan dengan cepat, efektif dan efisien. Penelitian ini bertujuan untuk membangun model klasifikasi gambar dan mengimplementasikan model ke dalam aplikasi berbasis web di sisi pengguna. Metode yang digunakan dalam penelitian ini meliputi klasifikasi citra, transfer learning, web scrapping dan prototyping perangkat lunak. Eksperimen berhasil membangun model klasifikasi citra pornografi-non pornografi dengan akurasi 99.15%. Model kemudian diimplementasikan ke dalam aplikasi ekstensi browser Chrome agar dapat dilakukan klasifikasi secara otomatis. Pengujian terhadap aplikasi yang dibangun menunjukkan aplikasi bekerja cukup baik dan mampu memblokir sebagian besar halaman web dengan konten pornografi.
Keywords
Full Text:
PDFReferences
R. de Alarcón, J. I. de la Iglesia, N. M. Casado, and A. L. Montejo, “Online porn addiction: What we know and what we don’t—a systematic review,” Journal of Clinical Medicine, vol. 8, no. 1, p. 91, Jan. 2019. doi:10.3390/jcm8010091.
H. Adarsh and S. Sahoo, “Pornography and its impact on adolescent/teenage sexuality,” Journal of Psychosexual Health, vol. 5, no. 1, pp. 35–39, Jan. 2023. doi:10.1177/26318318231153984 .
N. W. Mecham, M. F. Lewis-Western, and D. A. Wood, “The effects of pornography on unethical behavior in business,” Journal of Business Ethics, vol. 168, no. 1, pp. 37–54, Jun. 2019. doi:10.1007/s10551-019-04230-8 .
“Kominfo blokir 1,9 Juta Konten Pornografi di internet Ri, Terbanyak Dari website: Databoks,” Pusat Data Ekonomi dan Bisnis Indonesia, https://databoks.katadata.co.id/datapublish/2023/09/19/kominfo-blokir-19-juta-konten-pornografi-di-internet-ri-terbanyak-dari-website (accessed May 9, 2024).
Y. Cheng, H. Jiang, Z. Zhang, Y. Du, and T. Chai, “Birds of a feather flock together: Generating pornographic and gambling domain names based on character composition similarity,” Wireless Communications and Mobile Computing, vol. 2022, pp. 1–17, Jul. 2022. doi:10.1155/2022/4408987.
Ulfah, N., Irawan, N. O., Nurfadila, P. D., Ristanti, P. Y., & Hammad, J. A. H. (2019). Blocking pornography sites on the internet private and University Access. Bulletin of Social Informatics Theory and Application, 3(1), 22–29. https://doi.org/10.31763/businta.v3i1.161
Wang, Z. et al. (2021) ‘A new model for small target adult image recognition’, Procedia Computer Science, 183, pp. 557–562. doi:10.1016/j.procs.2021.02.097.
M. S. Farooq et al., “Skin detection based pornography filtering using adaptive back propagation neural network,” 2019 8th International Conference on Information and Communication Technologies (ICICT), Nov. 2019. doi:10.1109/icict47744.2019.9001915.
H. A. Al Naffakh, R. Ghazali, N. K. El Abbadi, and A. N. Razzaq, “A review of human skin detection applications based on image processing,” Bulletin of Electrical Engineering and Informatics, vol. 10, no. 1, pp. 129–137, Feb. 2021. doi:10.11591/eei.v10i1.2497.
D.-D. Phan et al., “A novel pornographic visual content classifier based on sensitive object detection,” International Journal of Advanced Computer Science and Applications, vol. 12, no. 5, 2021. doi:10.14569/ijacsa.2021.0120591.
H.-L. Tran et al., “Additional learning on object detection: A novel approach in pornography classification,” Future Data and Security Engineering. Big Data, Security and Privacy, Smart City and Industry 4.0 Applications, pp. 311–324, 2020. doi:10.1007/978-981-33-4370-2_22.
Setiono, K, Kristian, Y, Gunawan. (2021) “Deteksi Citra Pornografi Memanfaatkan Deep Convolutional Neural Network”, Insyst, vol. 3(1), doi:10.52985/insyst.v3i1.172.
Putra, M.T.D, Ardimansyah, M.I, Aprianti, D. (2022) “Deteksi Konten Pornografi Menggunakan Convolutional Neural Network untuk Melindungi Anak dari Bahaya Pornografi”, Jurnal Media Informatika Budidarma, 6(4), pp. 2401-2409, DOI: http://dx.doi.org/10.30865/mib.v6i4.4793.
N. Rikatsih, dkk. “Metode Penelitian Bidang Ilmu Komputer,” in Metode Penelitian di Berbagai Bidang, Bandung, Jawa Barat: Media Sains Indonesia, 2021, pp. 3–5.
S. Gustiani, “RESEARCH AND DEVELOPMENT (R&D) METHOD AS A MODEL DESIGN IN EDUCATIONAL RESEARCH AND ITS ALTERNATIVES,” HOLISTICS JOURNAL, vol. 1, no. 2, pp. 12–22, Dec. 2019.
Z. Li, F. Liu, W. Yang, S. Peng, and J. Zhou, “A survey of Convolutional Neural Networks: Analysis, applications, and prospects,” IEEE Transactions on Neural Networks and Learning Systems, vol. 33, no. 12, pp. 6999–7019, Dec. 2022. doi:10.1109/tnnls.2021.3084827.
S. Tammina, “Transfer learning using VGG-16 with deep convolutional neural network for classifying images,” International Journal of Scientific and Research Publications (IJSRP), vol. 9, no. 10, Oct. 2019. doi:10.29322/ijsrp.9.10.2019.p9420.
Meena, G., Mohbey, K. K., & Kumar, S. (2023). Sentiment analysis on images using convolutional neural networks based inception-V3 transfer learning approach. International Journal of Information Management Data Insights, 3(1), 100174. https://doi.org/10.1016/j.jjimei.2023.100174.
Senarath, U. S. (2021). Waterfall methodology, prototyping and agile development. Tech. Rep., 1-16.
I. A. Ahmad Sabri, M. Man, W. A. Abu Bakar, and A. N. Mohd Rose, “Web data extraction approach for deep web using WEIDJ,” Procedia Computer Science, vol. 163, pp. 417–426, 2019. doi:10.1016/j.procs.2019.12.124.
Z. Hamza and M. Hammad, “Testing approaches for web and mobile applications: An overview,” International Journal of Computing and Digital Systems, vol. 9, no. 4, pp. 657–664, Jul. 2020. doi:10.12785/ijcds/090413.
DOI: http://dx.doi.org/10.22441/incomtech.v15i3.30299

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Publisher Address:
Magister Teknik Elektro, Universitas Mercu Buana
Jl. Meruya Selatan 1, Jakarta 11650
Phone (021) 31935454/ 31934474
Fax (021) 31934474
Email: [email protected]
Website of Master Program in Electrical Engineering
http://mte.pasca.mercubuana.ac.id
pISSN: 2085-4811
eISSN: 2579-6089
Jurnal URL: http://publikasi.mercubuana.ac.id/index.php/Incomtech
Jurnal DOI: 10.22441/incomtech

Ciptaan disebarluaskan di bawah Lisensi Creative Commons Atribusi-NonKomersial 4.0 Internasional
The Journal is Indexed and Journal List Title by:












