Klasifikasi Sentimen Opini Metaverse dari Twitter Menggunakan Algoritma Support Vector Machine

Herlawati Herlawati, Adi Muhajirin, Zalfa Izdihar

Abstract


With the increasing use of Twitter, a real-time social media platform, it has become one of the places or spaces for people to express their opinions about the metaverse. Therefore, the development of a program capable of classifying tweets based on their opinions into positive, negative, and neutral categories is necessary. In conducting sentiment analysis, the Support Vector Machine (SVM) algorithm is used for classification. The results of this research, through testing using a confusion matrix, yield an accuracy rate of 0.83 or 83%, indicating the level of agreement between the model's predictions and the actual outcomes. Additionally, a precision of 0.93 or 93% is obtained, which shows the model's ability to accurately identify positive, negative, and neutral sentiments in tweets, and a recall of 0.83 or 83%, which describes the model's capability to find and classify accurately.


Keywords


Metaverse; Twitter; Sentiment Analysis; Real-Time; Support Vector Machine (SVM)

Full Text:

PDF

References


N. Stephenson, “Snow crash Neal Stephenson, London, RoC(Pengiun), 1993, 440 pages,” Futures, vol. 26, no. 7, pp. 798–800, 1994.

Z. Allam, A. Sharifi, S. E. Bibri, D. S. Jones, and J. Krogstie, “The Metaverse as a Virtual Form of Smart Cities: Opportunities and Challenges for Environmental, Economic, and Social Sustainability in Urban Futures,” Smart Cities, vol. 5, no. 3, pp. 771–801, 2022, doi: 10.3390/smartcities5030040.

A. Bifet and E. Frank, “Sentiment knowledge discovery in Twitter streaming data,” Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 6332 LNAI, pp. 1–15, 2010, doi: 10.1007/978-3-642-16184-1_1.

Priyanka Takalkar, Prajjawal Neware, Shravya Shetty, Bilal Shaikh, and Renuka Jetthy, “Sentiment Classification for Social Media Posts using Machine Learning,” International Journal of Advanced Research in Science, Communication and Technology, vol. 2, no. 5, pp. 20–23, 2022, doi: 10.48175/ijarsct-4005.

E. Kontopoulos, C. Berberidis, T. Dergiades, and N. Bassiliades, “Ontology-based sentiment analysis of twitter posts,” Expert Systems with Applications, vol. 40, no. 10, pp. 4065–4074, 2013, doi: 10.1016/j.eswa.2013.01.001.

V. Chandani and R. S. Wahono, “Komparasi Algoritma Klasifikasi Machine Learning Dan Feature Selection pada Analisis Sentimen Review Film,” Journal of Intelligent Systems, vol. 1, no. 1, pp. 55–59, 2015.

P. Arsi and R. Waluyo, “Analisis Sentimen Wacana Pemindahan Ibu Kota Indonesia Menggunakan Algoritma Support Vector Machine (SVM),” Jurnal Teknologi Informasi dan Ilmu Komputer, vol. 8, no. 1, p. 147, 2021, doi: 10.25126/jtiik.0813944.

O. S. D. Silaen, H. Herlawati, and R. Rasim, “Analisis Sentimen Mengenai Gangguan Bipolar Pada Twitter Menggunakan Algoritma Naïve Bayes,” Jurnal Komtika (Komputasi dan Informatika), vol. 6, no. 2, pp. 63–73, 2022, doi: 10.31603/komtika.v6i2.8198.

H. Herlawati, R. Trias Handayanto, I. Ekawati, K. I. Meutia, J. Asian, and U. Aditiawarman, “Twitter scrapping for profiling education staff,” 2020 5th International Conference on Informatics and Computing, ICIC 2020, no. November, 2020, doi: 10.1109/ICIC50835.2020.9288607.

Herlawati, R. T. Handayanto, D. Setiyadi, and E. Retnoningsih, “Corpus Usage for Sentiment Analysis of a Hashtag Twitter,” Proceedings of 2019 4th International Conference on Informatics and Computing, ICIC 2019, no. May 2021, 2019, doi: 10.1109/ICIC47613.2019.8985772.

S. Stieglitz, M. Mirbabaie, B. Ross, and C. Neuberger, “Social media analytics – Challenges in topic discovery, data collection, and data preparation,” International Journal of Information Management, vol. 39, no. October 2017, pp. 156–168, 2018, doi: 10.1016/j.ijinfomgt.2017.12.002.

R. T. Handayanto, H. Herlawati, P. D. Atika, F. N. Khasanah, A. Y. P. Yusuf, and D. Y. Septia, “Analisis Sentimen Pada Situs Google Review dengan Naïve Bayes dan Support Vector Machine,” Jurnal Komtika (Komputasi dan Informatika), vol. 5, no. 2, pp. 153–163, 2021, doi: 10.31603/komtika.v5i2.6280.

M. Riky Sudrajat, P. D. Atika, and . H., “Implementasi Support Vector Machine (SVM) dan Naïve Bayes untuk Analisis Sentimen Aplikasi KAI Access,” Jurnal ICT : Information Communication & Technology, vol. 20, no. 2, pp. 254–259, 2021, doi: 10.36054/jict-ikmi.v20i2.403.

P. E. BLATZ, the Formation of Long Wavelength Absorbing Species From Short Wavelength Absorbing Linear Conjugated Polyenes, vol. 15, no. 1. 1972.

R. Munawarah, O. Soesanto, and M. R. Faisal, “Penerapan Metode Support Vector Machine Pada Diagnosa Hepatitis,” Kumpulan jurnaL Ilmu Komputer (KLIK), vol. 04, no. 01, pp. 103–113, 2016, doi: 10.20527/klik.v3i1.39.

I. Markoulidakis, I. Rallis, I. Georgoulas, G. Kopsiaftis, A. Doulamis, and N. Doulamis, “Multiclass Confusion Matrix Reduction Method and Its Application on Net Promoter Score Classification Problem,” Technologies, vol. 9, no. 4, 2021, doi: 10.3390/technologies9040081.

A. Theissler, M. Thomas, M. Burch, and F. Gerschner, “ConfusionVis: Comparative evaluation and selection of multi-class classifiers based on confusion matrices,” Knowledge-Based Systems, vol. 247, p. 108651, 2022, doi: 10.1016/j.knosys.2022.108651.

M. Grandini, E. Bagli, and G. Visani, “Metrics for Multi-Class Classification: an Overview,” pp. 1–17, 2020, [Online]. Available: http://arxiv.org/abs/2008.05756.




DOI: http://dx.doi.org/10.22441/fifo.2023.v15i1.007

Refbacks

  • There are currently no refbacks.


Jurnal Ilmiah FIFO
Portal ISSNPrint ISSN: 2085-4315
Online ISSN: 2502-8332

Sekretariat
Fakultas Ilmu Komputer
Universitas Mercu Buana
Jl. Raya Meruya Selatan, Kembangan, Jakarta 11650
Tlp./Fax: +62215871335

http://publikasi.mercubuana.ac.id/index.php/fifo

e-mail:[email protected]

Creative Commons Licence
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Web
Analytics Made Easy - StatCounter
View My Stats

 

width= width=