Sentimen Analisis Mengenai Polusi Udara Menggunakan Algoritma Support Vector Machine dan Random Forest

Lukman Hakim, Muhammad Variansjah Dalimunthe, Chyquitha Danuputri, Destriana Widyaningrum

Abstract


Air pollution is the contamination of indoor or outdoor environments with chemical, physical, or biological substances that change the natural properties of the atmosphere. Domestic incinerators, cars, motorbikes, combustion products from factory processing, waste burning, and forest fires are common sources of air pollution. In Indonesia, there is no doubt that air pollution occurs because of the many forest fires in Indonesia. As a result of this case, many people's opinions differ. Various sentiments occur in cyberspace, one of which is Twitter. Twitter is the social media that accommodates the most various kinds of positive, negative and neutral opinions. Therefore, researchers want to solve the problem by implementing the SVM and Random Forest algorithms. The dataset was obtained from scrapping results using tweet harvest. The data obtained was 5545 tweets. By dividing the dataset model by 80% and 20%, the results showed that the accuracy of the SVM algorithm was better than the Random Forest algorithm. The accuracy of the SVM algorithm is 83% while the Random Forest algorithm is 81%.

Keywords


random forest, svm, twitter, sentiment analyst, pollution

Full Text:

PDF

References


BBC Indonesia, “Indonesia masuk ‘enam negara paling berkontribusi terhadap polusi udara global’, warga akan gugat pemerintah dan industri,” https://www.bbc.com/indonesia/articles/c72enp76622o.

CNBC Indonesia, “Bukan PLTU, Ternyata Ini Penyebab Utama Polusi di Jakarta,” https://www.cnbcindonesia.com/news/20230903164954-4-468635/bukan-pltu-ternyata-ini-penyebab-utama-polusi-di-jakarta#:~:text=Siti%20menjelaskan%20penyebab%20pencemaran%20kualitas,juta%20di%20antaranya%20sepeda%20motor.

CNBC Indonesia, “Polusi Makin Parah! Rakyat Menderita, Solusi Malah Amburadul,” https://www.cnbcindonesia.com/research/20230828123040-128-466679/polusi-makin-parah-rakyat-menderita-solusi-malah-amburadul.

N. Hendrastuty, A. Rahman Isnain, and A. Yanti Rahmadhani, “Analisis Sentimen Masyarakat Terhadap Program Kartu Prakerja Pada Twitter Dengan Metode Support Vector Machine,” vol. 6, no. 3, 2021, [Online]. Available: http://situs.com

A. P. Giovani, A. Ardiansyah, T. Haryanti, L. Kurniawati, and W. Gata, “ANALISIS SENTIMEN APLIKASI RUANG GURU DI TWITTER MENGGUNAKAN ALGORITMA KLASIFIKASI,” Jurnal Teknoinfo, vol. 14, no. 2, p. 115, Jul. 2020, doi: 10.33365/jti.v14i2.679.

G. A. Buntoro, “Analisis Sentimen Calon Gubernur DKI Jakarta 2017 Di Twitter,” 2017. [Online]. Available: https://t.co/jrvaMsgBdH

A. Fathan Hidayatullah, A. Sn, J. Teknik, I. Fakultas, and T. Industri, “ISSN: 1979-2328 UPN "Veteran,” 2014. [Online]. Available: http://www.situs.com

M. Rangga, A. Nasution, and M. Hayaty, “Perbandingan Akurasi dan Waktu Proses Algoritma K-NN dan SVM dalam Analisis Sentimen Twitter,” JURNAL INFORMATIKA, vol. 6, no. 2, pp. 212–218, 2019, [Online]. Available: http://ejournal.bsi.ac.id/ejurnal/index.php/ji

M. I. Fikri, T. S. Sabrila, Y. Azhar, and U. M. Malang, “Perbandingan Metode Naïve Bayes dan Support Vector Machine pada Analisis Sentimen Twitter”.

A. Novantirani, M. S. Kania Sabariah, and V. Effendy, “Analisis Sentimen pada Twitter untuk Mengenai Penggunaan Transportasi Umum Darat Dalam Kota dengan Metode Support Vector Machine.”

R. Tineges, A. Triayudi, and I. D. Sholihati, “Analisis Sentimen Terhadap Layanan Indihome Berdasarkan Twitter Dengan Metode Klasifikasi Support Vector Machine (SVM),” JURNAL MEDIA INFORMATIKA BUDIDARMA, vol. 4, no. 3, p. 650, Jul. 2020, doi: 10.30865/mib.v4i3.2181.

D. Darwis, E. Shintya Pratiwi, A. Ferico, and O. Pasaribu, “PENERAPAN ALGORITMA SVM UNTUK ANALISIS SENTIMEN PADA DATA TWITTER KOMISI PEMBERANTASAN KORUPSI REPUBLIK INDONESIA,” 2020.

N. Dwi Putranti and E. Winarko, “Analisis Sentimen Twitter untuk Teks Berbahasa Indonesia dengan Maximum Entropy dan Support Vector Machine,” IJCCS, vol. 8, no. 1, pp. 91–100, 2014.

Y. Tao, F. Zhang, C. Shi, and Y. Chen, “Social media data-based sentiment analysis of tourists’ air quality perceptions,” Sustainability (Switzerland), vol. 11, no. 18, Sep. 2019, doi: 10.3390/su11185070.

M. R. Huq, A. Ali, and A. Rahman, “Sentiment Analysis on Twitter Data using KNN and SVM,” 2017. [Online]. Available: www.ijacsa.thesai.org

AWC, “What is Sentiment Analysis?,” https://aws.amazon.com/what-is/sentiment-analysis/#:~:text=Sentiment%20analysis%20is%20the%20process,social%20media%20comments%2C%20and%20reviews.

Rohith Gandhi, “Support Vector Machine — Introduction to Machine Learning Algorithms,” https://towardsdatascience.com/support-vector-machine-introduction-to-machine-learning-algorithms-934a444fca47.

Sruthi E R and Analytics Vidyha, “Understand Random Forest Algorithms With Examples (Updated 2023),” https://www.analyticsvidhya.com/blog/2021/06/understanding-random-forest/.

Tokenex, “What is Tokenization?,” Tokenex. Accessed: Oct. 24, 2023. [Online]. Available: https://www.tokenex.com/blog/what-is-tokenization/

Alexander S Gillis, “Definition Lemmatization,” 2023. Accessed: Oct. 24, 2023. [Online]. Available: https://www.techtarget.com/searchenterpriseai/definition/lemmatization




DOI: http://dx.doi.org/10.22441/fifo.2023.v15i2.001

Refbacks

  • There are currently no refbacks.


Jurnal Ilmiah FIFO
Portal ISSNPrint ISSN: 2085-4315
Online ISSN: 2502-8332

Sekretariat
Fakultas Ilmu Komputer
Universitas Mercu Buana
Jl. Raya Meruya Selatan, Kembangan, Jakarta 11650
Tlp./Fax: +62215871335

http://publikasi.mercubuana.ac.id/index.php/fifo

e-mail:[email protected]

Creative Commons Licence
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Web
Analytics Made Easy - StatCounter
View My Stats

 

width= width=