A Comparative Study of Machine Learning with Statistical Feature Selection for Risk Detection of Diabetic
Abstract
Keywords
Full Text:
PDFReferences
H. E. Massari, Z. Sabouri, S. Mhammedi, and N. Gherabi, “Diabetes Prediction Using Machine Learning Algorithms and Ontology,” J. ICT Stand., May 2022, doi: 10.13052/jicts2245-800X.10212.
M. M. Farag, M. Fouad, and A. T. Abdel-Hamid, “Automatic Severity Classification of Diabetic Retinopathy Based on DenseNet and Convolutional Block Attention Module,” IEEE Access, vol. 10, pp. 38299–38308, 2022, doi: 10.1109/ACCESS.2022.3165193.
Z. Xie, O. Nikolayeva, J. Luo, and D. Li, “Building Risk Prediction Models for Type 2 Diabetes Using Machine Learning Techniques,” Prev. Chronic. Dis., vol. 16, p. 190109, Sep. 2019, doi: 10.5888/pcd16.190109.
S. Gupta, B. Kishan, and P. Gulia, “Comparative Analysis of Predictive Algorithms for Performance Measurement,” IEEE Access, vol. 12, pp. 33949–33958, 2024, doi: 10.1109/ACCESS.2024.3372082.
H. Zhang and Y. Zhang, “An Improved Sparrow Search Algorithm for Optimizing Support Vector Machines,” IEEE Access, vol. 11, pp. 8199–8206, 2023, doi: 10.1109/ACCESS.2023.3234579.
S. Liang, A. Q. M. Sabri, F. Alnajjar, and C. K. Loo, “Autism Spectrum Self-Stimulatory Behaviors Classification Using Explainable Temporal Coherency Deep Features and SVM Classifier,” IEEE Access, vol. 9, pp. 34264–34275, 2021, doi: 10.1109/ACCESS.2021.3061455.
D. N and N. P. K S, “Improved Clinical Diagnosis Using Predictive Analytics,” IEEE Access, vol. 10, pp. 75158–75175, 2022, doi: 10.1109/ACCESS.2022.3190416.
N. Assani, P. Matić, N. Kaštelan, and I. R. Čavka, “A Review of Artificial Neural Networks Applications in Maritime Industry,” IEEE Access, vol. 11, pp. 139823–139848, 2023, doi: 10.1109/ACCESS.2023.3341690.
B. A. S. Emambocus, M. B. Jasser, and A. Amphawan, “A Survey on the Optimization of Artificial Neural Networks Using Swarm Intelligence Algorithms,” IEEE Access, vol. 11, pp. 1280–1294, 2023, doi: 10.1109/ACCESS.2022.3233596.
C. Liu, Z. Gu, and J. Wang, “A Hybrid Intrusion Detection System Based on Scalable K-Means+ Random Forest and Deep Learning,” IEEE Access, vol. 9, pp. 75729–75740, 2021, doi: 10.1109/ACCESS.2021.3082147.
Z. Huang and D. Chen, “A Breast Cancer Diagnosis Method Based on VIM Feature Selection and Hierarchical Clustering Random Forest Algorithm,” IEEE Access, vol. 10, pp. 3284–3293, 2022, doi: 10.1109/ACCESS.2021.3139595.
G. P. Shukla, S. Kumar, S. K. Pandey, R. Agarwal, N. Varshney, and A. Kumar, “Diagnosis and Detection of Alzheimer’s Disease Using Learning Algorithm,” Big Data Min. Anal., vol. 6, no. 4, pp. 504–512, Dec. 2023, doi: 10.26599/BDMA.2022.9020049.
P. Haldar et al., “XGBoosted Binary CNNs for Multi-Class Classification of Colorectal Polyp Size,” IEEE Access, vol. 11, pp. 128461–128472, 2023, doi: 10.1109/ACCESS.2023.3332826.
M. Varan, J. Azimjonov, and B. Maçal, “Enhancing Prostate Cancer Classification by Leveraging Key Radiomics Features and Using the Fine-Tuned Linear SVM Algorithm,” IEEE Access, vol. 11, pp. 88025–88039, 2023, doi: 10.1109/ACCESS.2023.3306515.
H. M. Alshamlan, “An Effective Filter Method Towards the Performance Improvement of FF-SVM Algorithm,” IEEE Access, vol. 9, pp. 140835–140840, 2021, doi: 10.1109/ACCESS.2021.3119233.
T. S. Alshammari, “Applying Machine Learning Algorithms for the Classification of Sleep Disorders,” IEEE Access, vol. 12, pp. 36110–36121, 2024, doi: 10.1109/ACCESS.2024.3374408.
S. Punitha, T. Stephan, R. Kannan, M. Mahmud, M. S. Kaiser, and S. B. Belhaouari, “Detecting COVID-19 From Lung Computed Tomography Images: A Swarm Optimized Artificial Neural Network Approach,” IEEE Access, vol. 11, pp. 12378–12393, 2023, doi: 10.1109/ACCESS.2023.3236812.
J.-G. Choi, I. Ko, and S. Han, “Depression Level Classification Using Machine Learning Classifiers Based on Actigraphy Data,” IEEE Access, vol. 9, pp. 116622–116646, 2021, doi: 10.1109/ACCESS.2021.3105393.
C. Zhang, X. Wang, S. Chen, H. Li, X. Wu, and X. Zhang, “A Modified Random Forest Based on Kappa Measure and Binary Artificial Bee Colony Algorithm,” IEEE Access, vol. 9, pp. 117679–117690, 2021, doi: 10.1109/ACCESS.2021.3105796.
T. Sinha Roy, J. K. Roy, and N. Mandal, “Conv-Random Forest-Based IoT: A Deep Learning Model Based on CNN and Random Forest for Classification and Analysis of Valvular Heart Diseases,” IEEE Open J. Instrum. Meas., vol. 2, pp. 1–17, 2023, doi: 10.1109/OJIM.2023.3320765.
T.-H. S. Li, H.-J. Chiu, and P.-H. Kuo, “Hepatitis C Virus Detection Model by Using Random Forest, Logistic-Regression and ABC Algorithm,” IEEE Access, vol. 10, pp. 91045–91058, 2022, doi: 10.1109/ACCESS.2022.3202295.
L. Jia, Z. Wang, S. Lv, and Z. Xu, “PE_DIM: An Efficient Probabilistic Ensemble Classification Algorithm for Diabetes Handling Class Imbalance Missing Values,” IEEE Access, vol. 10, pp. 107459–107476, 2022, doi: 10.1109/ACCESS.2022.3212067.
Z. Ahmed, B. Issac, and S. Das, “Ok-NB: An Enhanced OPTICS and k-Naive Bayes Classifier for Imbalance Classification With Overlapping,” IEEE Access, vol. 12, pp. 57458–57477, 2024, doi: 10.1109/ACCESS.2024.3391749.
H. C. S. C. Lima, F. E. B. Otero, L. H. C. Merschmann, and M. J. F. Souza, “A Novel Hybrid Feature Selection Algorithm for Hierarchical Classification,” IEEE Access, vol. 9, pp. 127278–127292, 2021, doi: 10.1109/ACCESS.2021.3112396.
G. J. Ansari, J. H. Shah, M. C. Q. Farias, M. Sharif, N. Qadeer, and H. U. Khan, “An Optimized Feature Selection Technique in Diversified Natural Scene Text for Classification Using Genetic Algorithm,” IEEE Access, vol. 9, pp. 54923–54937, 2021, doi: 10.1109/ACCESS.2021.3071169.
A. K. Mandal, Md. Nadim, H. Saha, T. Sultana, Md. D. Hossain, and E.-N. Huh, “Feature Subset Selection for High-Dimensional, Low Sampling Size Data Classification Using Ensemble Feature Selection With a Wrapper-Based Search,” IEEE Access, vol. 12, pp. 62341–62357, 2024, doi: 10.1109/ACCESS.2024.3390684.
L. Al-Shalabi, “New Feature Selection Algorithm Based on Feature Stability and Correlation,” IEEE Access, vol. 10, pp. 4699–4713, 2022, doi: 10.1109/ACCESS.2022.3140209.
F. Feng, K.-C. Li, J. Shen, Q. Zhou, and X. Yang, “Using Cost-Sensitive Learning and Feature Selection Algorithms to Improve the Performance of Imbalanced Classification,” IEEE Access, vol. 8, pp. 69979–69996, 2020, doi: 10.1109/ACCESS.2020.2987364.
S. Rahman and K. Adhikari, “Comparative Analysis of SVM and CNN for Sonar Signal Classification Using Sparse Arrays,” IEEE Access, vol. 12, pp. 59818–59830, 2024, doi: 10.1109/ACCESS.2024.3393893.
R. Obiedat et al., “Sentiment Analysis of Customers’ Reviews Using a Hybrid Evolutionary SVM-Based Approach in an Imbalanced Data Distribution,” IEEE Access, vol. 10, pp. 22260–22273, 2022, doi: 10.1109/ACCESS.2022.3149482.
R. Guo, Z. Zhao, T. Wang, G. Liu, J. Zhao, and D. Gao, “Degradation State Recognition of Piston Pump Based on ICEEMDAN and XGBoost,” Appl. Sci., vol. 10, no. 18, p. 6593, Sep. 2020, doi: 10.3390/app10186593.
S. Naiem, A. E. Khedr, A. M. Idrees, and M. I. Marie, “Enhancing the Efficiency of Gaussian Naïve Bayes Machine Learning Classifier in the Detection of DDOS in Cloud Computing,” IEEE Access, vol. 11, pp. 124597–124608, 2023, doi: 10.1109/ACCESS.2023.3328951.
N. Shrestha, “Detecting Multicollinearity in Regression Analysis,” Am. J. Appl. Math. Stat., vol. 8, no. 2, pp. 39–42, Jun. 2020, doi: 10.12691/ajams-8-2-1.
F. Al Anshory, S. Siswanto, S. A. Thamrin, and I. Inayah, “Improved Chi Square Automatic Interaction Detection on Students Discontinuation to Secondary School,” J. Varian, vol. 7, no. 1, pp. 15–26, Oct. 2023, doi: 10.30812/varian.v7i1.2627.
Z. S. Rubaidi, B. B. Ammar, and M. B. Aouicha, “Fraud Detection Using Large-scale Imbalance Dataset,” Int. J. Artif. Intell. Tools, vol. 31, no. 08, p. 2250037, Dec. 2022, doi: 10.1142/S0218213022500373.
DOI: http://dx.doi.org/10.22441/fifo.2025.v17i2.001
Refbacks
- There are currently no refbacks.
Jurnal Ilmiah FIFO
Fakultas Ilmu Komputer Universitas Mercu Buana
Jl. Raya Meruya Selatan, Kembangan, Jakarta 11650
Tlp./Fax: +62215871335
p-ISSN: 2085-4315
e-ISSN: 2502-8332
http://publikasi.mercubuana.ac.id/index.php/fifo
e-mail:[email protected]

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.









