Klasifikasi Stunting Pada Balita Berdasarkan Status Gizi Menggunakan Pendekatan Support Vector Machine (SVM)
Abstract
Keywords
Full Text:
PDFReferences
M. R. Nugroho, R. N. Sasongko, and M. Kristiawan, “Faktor-Faktor yang Mempengaruhi Kejadian Stunting pada Anak Usia Dini di Indonesia,” J. Obs. J. Pendidik. Anak Usia Dini, vol. 5, no. 2, pp. 2269–2276, 2021, doi: 10.31004/obsesi.v5i2.1169.
M. E. Setiyawati, L. P. Ardhiyanti, E. N. Hamid, N. A. T. Muliarta, and Y. J. Raihanah, “Studi Literatur: Keadaan dan Penanganan Stunting di Indonesia,” IKRAITH-HUMANIORA, vol. 8, no. 2, pp. 179–186, 2022.
H. Rahman, M. Rahmah, and N. Saribulan, “Upaya Penanganan Stunting di Indonesia: Analisis Bibliometrik dan Analisis Konten,” J. Ilmu Pemerintah. Suara Khatulistiwa, vol. VIII, no. 01, pp. 44–59, 2023.
A. F. Amida, S. E. Permana, D. Pratama, K. Anam, and A. R. Rinaldi, “Prediction of Stunted Toddlers Using K-Nearest Neighbor Algorithm in Kamarang Lebak Village,” Instal J. Komput., vol. 15, no. 02, pp. 345–355, 2023.
P. Handayani, A. C. Fauzan, and H. Harliana, “Machine Learning Klasifikasi Status Gizi Balita Menggunakan Algoritma Random Forest,” KLIK Kaji. Ilm. Inform. dan Komput., vol. 4, no. 6, pp. 3064–3072, 2024, doi: 10.30865/klik.v4i6.1909.
T. Hardiani and R. N. Putri, “Implementasi Metode Naïve Bayes Classifier Untuk Klasifikasi Stunting Pada Balita,” Digit. Transform. Technol., vol. 4, no. 1, pp. 621–627, 2024.
M. Fikri, “Klasifikasi Status Stunting Pada Anak Bawah Lima Tahun Menggunakan Extreme Gradient Boosting,” Merkurius J. Ris. Sist. Inf. dan Tek. Inform., vol. 2, no. 4, pp. 173–184, 2024.
I. M. D. P. Asana and N. P. D. T. Yanti, “Sistem Klasifikasi Pengajuan Kredit Dengan Metode Support Vector Machine (SVM),” J. Sist. Cerdas, vol. 06, no. 02, pp. 123–133, 2023.
R. Sistem, K. Mahasiswa, and T. Waktu, “Penerapan Algoritma Support Vector Machine Untuk Model Prediksi Kelulusan Mahasiswa Tepat Waktu,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 5, no. 2, pp. 386–392, 2021.
U. Amelia et al., “Implementasi Algoritma Support Vector Machine (SVM) Untuk Prediksi Penyakit Stroke Dengan Atribut Berpengaruh,” Sci. Student J. Information, Technol. Sci., vol. III, no. 2, pp. 254–259, 2022.
A. W. Mucholladin, F. A. Bachtiar, and M. T. Furqon, “Klasifikasi Penyakit Diabetes menggunakan Metode Support Vector Machine,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 5, no. 2, pp. 622–633, 2021.
M. D. A. Rosyid and S. Subektiningsih, “Klasifikasi Tingkat Risiko Kesehatan Ibu Hamil Menggunakan Algoritma Support Vectore Machine,” Indones. J. Comput. Sci., vol. 12, no. 1, pp. 2798–2807, 2023.
R. I. Borman, R. Napianto, N. Nugroho, D. Pasha, Y. Rahmanto, and Y. E. P. Yudoutomo, “Implementation of PCA and KNN Algorithms in the Classification of Indonesian Medicinal Plants,” in International Conference on Computer Science, Information Technology and Electrical Engineering (ICOMITEE), 2021, pp. 46–50.
R. P. Pradana, “Stunting Toddler Detection,” Kaggle, 2024. https://www.kaggle.com/datasets/rendiputra/stunting-balita-detection-121k-rows/
R. I. Borman and M. Wati, “Penerapan Data Maining Dalam Klasifikasi Data Anggota Kopdit Sejahtera Bandarlampung Dengan Algoritma Naïve Bayes,” J. Ilm. Fak. Ilmu Komput., vol. 9, no. 1, pp. 25–34, 2020.
I. O. Muraina, “Ideal Dataset Splitting Ratios in Machine Learning Algorithms: General Concerns for Data Scientists and Data Analysts,” in International Mardin Artuklu Scientific Researches Conference, 2022, pp. 496–505.
C. M. Sitorus, A. Rizal, and M. Jajuli, “Prediksi Risiko Perjalanan Transportasi Online Dari Data Telematik Menggunakan Algoritma Support Vector Machine,” J. Tek. Inform. dan Sist. Inf., vol. 6, no. 2, pp. 254–265, 2020.
N. G. Ramadhan and A. Khoirunnisa, “Klasifikasi Data Malaria Menggunakan Metode Support Vector Machine,” J. Media Inform. Budidarma, vol. 5, no. 4, pp. 1580–1584, 2021, doi: 10.30865/mib.v5i4.3347.
M. Singla and K. K. Shukla, “Robust statistics-based support vector machine and its variants: a survey,” Neural Comput. Appl., vol. 32, no. 15, pp. 11173–11194, 2020, doi: 10.1007/s00521-019-04627-6.
S. S. Arifin, A. M. Siregar, A. R. Juwita, and T. Al Mudzakir, “Klasifikasi Penyakit Kanker Serviks Menggunakan Algoritma Support Vector Machine (SVM),” in Conference on Innovation and Application of Science and Technology (CIASTECH), 2021, pp. 521–528.
Y. Fernando, R. Napianto, and R. I. Borman, “Implementasi Algoritma Dempster-Shafer Theory Pada Sistem Pakar Diagnosa Penyakit Psikologis Gangguan Kontrol Impuls,” Insearch Inf. Syst. Res. J., vol. 2, no. 2, pp. 46–54, 2022.
G. Naidu, T. Zuva, and E. M. Sibanda, “A Review of Evaluation Metrics in Machine Learning Algorithms,” in Artificial Intelligence Application in Networks and Systems, 2023, pp. 15–25.
Y. Liu, Y. Li, and D. Xie, “Implications of imbalanced datasets for empirical ROC-AUC estimation in binary classification tasks,” J. Stat. Comput. Simul., vol. 94, no. 1, pp. 183–203, Jan. 2024, doi: 10.1080/00949655.2023.2238235.
DOI: http://dx.doi.org/10.22441/fifo.2024.v16i2.007
Refbacks
- There are currently no refbacks.
Jurnal Ilmiah FIFO
Print ISSN: 2085-4315 | |
Online ISSN: 2502-8332 |
Sekretariat
Fakultas Ilmu Komputer
Universitas Mercu Buana
Jl. Raya Meruya Selatan, Kembangan, Jakarta 11650
Tlp./Fax: +62215871335
http://publikasi.mercubuana.ac.id/index.php/fifo
e-mail:[email protected]
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.