Investigasi Pengaruh Step Training pada Metode Single Shot Multibox Detector untuk Marker dalam Teknologi Augmented Reality
Abstract
Nowadays, Artificial Intelligence is one of the most developing technology, especially on Augmented Reality (AR). AR is a technology which connected between real world and virtual in a real time that allows user to interact directly and display it in 3D. AR technology has two methods, that are AR based on marker and AR based on markerless. However, AR based on marker need an object detection system which has high performance as an interaction tools between user and the device. Single shot multibox detector (SSD) is an object detection algorithm that has fast learning computation and good performance. This method is affected by some parameters like number of epoch, learning rate, batch size, step training, etc. However, to create a good system it took a long process such as taking dataset, labelling process, then training and testing models to gain the best performance. In this experiment, we analyze SSD method in AR technology using inception architecture as pre-trained Convolutional neural network (CNN), and then do transfer learning to minimize amount training time. The configuration that used is the number of step training. The result of this experiment gets the best accuracy in 70.17%. Then, the best performance is used as an object detection model for marker’s AR technology.
Abstrak
Saat ini, Artificial intelligence merupakan teknologi yang sedang berkembang pesat. Salah satunya adalah teknologi Augmented Reality (AR). AR adalah teknologi yang menggabungkan dunia nyata dengan virtual secara real-time dengan interaksi pengguna secara langsung dan menampilkannya dalam bentuk 3D. Teknologi AR ini memiliki dua metode yaitu dengan marker dan markerless. Dalam perkembangannya, AR berbasis marker membutuhkan sistem deteksi objek yang memiliki performa tinggi sebagai alat interaksi antara pengguna dengan perangkatnya. Single shot multibox detector (SSD) merupakan algoritma deteksi objek yang memiliki komputasi pembelajaran dan kinerja yang baik. Metode ini dipengaruhi oleh beberapa parameter seperti jumlah lapisan konvolusi, epoch, learning rate, jumlah batch, step training, dll. Namun, dalam mengimplementasikannya diperlukan proses yang cukup panjang seperti, pengambilan dataset, proses pelabelan, proses pelatihan menggunakan metode SSD, dan melakukan pengujian terhadap beberapa model untuk mencari perfomansi paling baik. Dalam percobaan ini, kami melakukan analisis terhadap metode SSD pada teknologi AR menggunakan arsitektur Inception sebagai pre-trained Convolutional neural network (CNN), kemudian dilakukan transfer learning untuk memperkecil jumlah kelas data pelatihan dan waktu pelatihan data. Konfigurasi yang digunakan berupa jumlah step pada pelatihan. Hasil dari penilitian ini menunjukan akurasi terbaik sebesar 70,17%. Kemudian, perfomansi terbaik digunakan sebagai model deteksi objek untuk marker pada teknologi AR.
Keywords
Full Text:
PDFReferences
Billinghurst, M., Clark, A., & Lee, G. 2015. A Survey of Augmented Reality. Foundations and Trends in Human–Computer Interaction, 8(2-3), 73–272.
S. Sadhana Rao. 2010. Sixth sense technology. International Conference on Communication and Computational Intelligence (INCOCCI), Erode.
S. Ren, K. He, R. Girshick, and J. Sun. 2017. Faster r-cnn: towards real-time object detection with region proposal networks. IEEE Transactions on Pattern Analysis & Machine Intelligence.
J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. 2016. You only look once: Unified, real-time object detection. Proceedings of the IEEE conference on computer vision and pattern recognition.
M. A. Afwani, E. Utami, and E. Pramono. 2017. Modifikasi Default-Boxes Pada Model SSD Untuk Meningkatkan Keakuratan Deteksi. Jurnal IT CIDA.
Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to document recognition,” Proceedings of the IEEE.
S. A. Wibowo, H. Lee, E. K. Kim, and S. Kim. 2018. Collaborative learning based on convolutional features and correlation filter for visual tracking. International Journal of Control, Automation and Systems.
S. A. Wibowo, H. Lee, E. K. Kim, and S. Kim. 2017. Convolutional shallow features for performance improvement of histogram of oriented gradients in visual object tracking. Mathematical Problems in Engineering.
S. A. Wibowo, H. Lee, E. K. Kim, and S. Kim. 2017. Visual Tracking Based on Complementary Learners with Distractor Handling. Mathematical Problems in Engineering.
J. Wu. 2017. Introduction to convolutional neural networks. National Key Lab for Novel Software Technology. Nanjing University. China.
N. Sofia, 2018. Convolutional neural network. A Medium Corporation.
R. Darmadi. 2018. Mengenal Convolutional Layer Dan Pooling layer. Medium Corporation.
A. Yanuar. 2018. Fully-Connected Layer CNN dan Implementasinya. Universitas Gadjah Mada Menara Machine learning.
Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y., & Berg, A. C. 2016. SSD: Single shot multibox detector. Lecture Notes in Computer Science, 21–37.
C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna. 2016. Rethinking the inception architecture for computer vision. Proceedings of the IEEE conference on computer vision and pattern recognition.
V. Rahmawan, D. Oktavian, and D. Alamsyah. 2017. Penerapan Algoritma Particle Filter pada Face Tracking.
Tian, P. 2015. A particle filter object tracking based on feature and location fusion. 6th IEEE International Conference on Software Engineering and Service Science (ICSESS).
DOI: http://dx.doi.org/10.22441/fifo.2020.v12i1.001
Refbacks
- There are currently no refbacks.
Jurnal Ilmiah FIFO
Print ISSN: 2085-4315 | |
Online ISSN: 2502-8332 |
Sekretariat
Fakultas Ilmu Komputer
Universitas Mercu Buana
Jl. Raya Meruya Selatan, Kembangan, Jakarta 11650
Tlp./Fax: +62215871335
http://publikasi.mercubuana.ac.id/index.php/fifo
e-mail:[email protected]
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.