Parametric Optimization under Cryogenic Machining of Medium Carbon Low Alloy Steel EN-19 Using the Integrated Taguchi-Present Worth Method
Abstract
Keywords
Full Text:
PDFReferences
Anthuvan R.N., Kumar S.P., Prakash R.A., Arunkarthik B., Akhilesh A. 2021, Machinability study in milling of Ti-6Al-4V using cryogenic treated and coated tool, Materials Today: Proceedings, In Press, https://doi.org/10.1016/j.matpr.2021.03.451
Balaji V., Ravi S., Chandran P.N., Damodaran K.M., 2015, Review of the cryogenic machining in turning and milling process, International Journal of Research in Engineering and Technology, Vol. 4, No. 10, pp. 38-42.
Bansal A., Singla A.L, Diviedi V., Goyal D.K., Singla J., Gupta M.K., Krolczyk G.M., 2020, Influence of cryogenic treatment on the mechanical performance of friction stir Al-Zn-Cu alloy weldments, Journal of manufacturing processes, Vol. 56, pp. 43-53
Barylski A., Aniolek K., Derez G., Kupka M, Kaptaez S., 2021, the effect of deep cryogenic treatment and precipitation hardening on the structure, micromechanical properties and wear of the Mg-Y-Nd- Zr alloy, Wear, Vol. 468-469, Article 283587
Bharat N., Bose P.S.C. 2021, An overview on machinability of hard to cut materials using laser assisted machining, Materials Today: Proceedings, Vol. 43, No. 1, pp. 665-672. https://doi.org/10.1016/j.matpr.2020.12.587
Bicek M., Dimont F., Courbon C., Pusavea F., Rech J., Kpac J., 2012, Cryogenic machining as an alternative turning process of normalized and hardened AISI 52100 bearing steel, Journal of Material Processing Technology, Vol. 212, No. 12, pp. 2609-2618
Choudhary R., Garg H., Prasad M., Kumar D., 2017, Effect of cryogenic treatment of tool electrode on the machining performance and surface finish during electrical discharge machining of Hastelloy C-4, Materials Today: Proceedings, Vol.4, No. 2, pp. 1158-1166. https://doi.org/10.1016/j.matpr.2017.01.132
Damir, A., Sadek A., Attia H., 2018, Characterization of machinability and environmental impact of cryogenic turning of Ti-6AL-4V, Procedia CIRP, Vol. 69, pp.893-898.
Das R.K., Sahoo A.K., Kumar R., Panda A. 2020, Performances of time-controlled pulse minimum quantity lubrication in machining of hard to cut material: A brief review, Materials Today: Proceedings, Vol. 23, No. 3, pp. 545-548. https://doi.org/10.1016/j.matpr.2019.05.404
Dhar N.R., Kamruzzaman M., Khan M.M.A, Chattopadhyay A.B., 2006, Effects of cryogenic cooling by liquid nitrogen jets on tool wear, surface finish and dimensional deviation in turning different steels, International Journal of Machining and Machinability of Materials, Vol. 1, No. 1, pp. 115-131.
Dhananchezian M., Rishabapriyan M, Rajashekar G., Narayanan S.S., 2018, Study the effect of cryogenic cooling on machinability characteristics during turning duplex stainless steel 2205, Materials Today: Proceedings, Vol 5, No. 5, pp.1206-12070.
Dhokey N.B., Maske S.S., Ghosh P., 2021, Effects of tempering and cryogenic treatment on wear and mechanical properties of hot work tool steel (HB), Materials Today. Proceedings, Vol. 43, No. 5, pp. 3006-3013
Dutta D.K. 1992, Planning and the regulatory role of the Indian state, Journal of Contemporary Asia, Vol. 22, No. 1, pp. 82-93. https://doi.org/10.1080/00472339280000071
Fantoneli D.G., Parcianellon C.T., Rosendo T.S., Reguly A., Tier M.D., 2020. Effect of heat and cryogenic treatment on wear and toughness of HSS AISI M2, Journal of Materials Research and Technology, Vol. 9 No. 6, 12354-12363)
Feucht F., Ketelaer J., Wolff A., Mori M., Fujishima M. 2014, Latest machining technologies of hard-to-cut materials by ultrasonic machine tool, Procedia CIRP, Vol. 14, pp. 148-152. https://doi.org/10.1016/j.procir.2014.03.040
Gross D., Bigelmaier M, Meier T., Amons S, Ostrowicki N., Hanenkamp N., 2019, Investigation of the influence of lubricating oils on the turning of metallic materials with cryogenic minimum quantity lubrication, Procedia CIRP, Vol. 80, pp.95-100.
Halim N.H.A, Chettaron C.H, Ghani J.A., Azhar M.F., 2018, Machining-induced microstructure of Inconel 718 in cryogenic environment, Progress in Industrial Ecology: An International Journal, Vol 12, No. 3, pp. 234-246
Jagadesh T., Samuel G.L., 2019, The influence of deep cryogenic treatment and in-situ cryogenic micro turning of Ti-6AL-4V on cutting forces, surface integrity and chip morphology, International Journal of Precision Technology., Vol. 8, No. 2/3/4, pp. 312-334
Jovicevic-Klug P., Jenko M., Jovicevic-Klug M., Setin B., 2021, Effect of deep cryogenic treatment on surface chemistry and microstructure of selected high-speed steels, Applied Surface Science, Vol. 548, Article 149257
Joviecevic–Klug P. and Podgornik B., 2020; comparative study of conventional and deep cryogenic treatment of AISI M3: 2 (EN 1. 2295) high-speed steel, Journal of Materials Research and Technology, Vol. 9, No. 6, pp 13118-13127.
Khare S.K., Phull G.S., Verma R.K., Agarwal S., 2021, A comparison between optimization techniques of cutting parameters under cryogenic machining process, Materials Today: Proceedings.
Khalil R. and Emadi H., 2020, An experimental investigation of cryogenic treatments reflects on porosity, permeability and mechanical properties of Marcellus downhole core samples, Journal of Natural Gas Science and Engineering, Vol. 81, Article 103422
Khann N., Agrawal C., Shadgaar J., Larsen, Phadmis V.A., 2019, Eco-friendly machining using retrofitted cryogenic machining system, Materials Today: Proceedings, Vol. 18, No 7, pp.2806-2813.
Krishnamoothy A., 2011, Some studies on modelling and optimization in drilling carbon fibre reinforced plastic composites, Ph.D. Thesis, Faculty of Mechanical Engineering, Anna University, Chennai, India
Mia M., 2017, Multi-response optimization of end milling parameters under through tool cryogenic cooling condition, measurement, Vol. 111, pp.134-145.
Muthuraman P., Karunakaran K., 2021, Optimisation of face milling process parameters by GRA with deep cryogenic treated milling cutter, Materials Today: Proceedings, Vol. 37, No. 2, pp. 1631-1617.
Nagimova A., Perveen A. 2019, A review on Laser Machining of hard to cut materials, Materials Today: Proceedings, Vol. 18, No. 7, pp. 2440-2447. https://doi.org/10.1016/j.matpr.2019.07.092
Nie G-C., Zhang X-M., 2018, An experimental study of the white layer formation during cryogenic assisted hard machining of AISI52100 steel, Procedia CIRP, Vol. 77, pp.223-226 Ozbek N.A., 2020, Effects of cryogenic treatment types on the performance of coasted tungsten tools in the turning of AISI H11 steel, Journal of Materials Research and Technology, Vol 9, No 4, pp. 9442-9456.
Oji B.C. and Oke S.A. 2020, Optimisation of bottling process using "hard' total quality management elements, The TQM Journal, Vol. 33, No. 2, pp. 473-502
Oke S.A. and Fagbolagun I.O., 2021, Optimisation of packaging process parameters using combined Taguchi method-present worth method/inflationary factor validated, International Journal of Industrial Engineering and Engineering Management, Accepted for publication.
Patil V.A., Jadhav B.R., 2019, Experimental investigation of cryogenic machining of EN-19 steel, Journal of Emerging Technologies and Innovation Research, Vol. 6, No 4, pp. 634-638
Pereira O., Rodriguez A., Ayesta I., Garcia J.B., Fernandez-Abia A.I., Lepez De Lacalle L.N., 2016, A cryo lubri-coolant approach for finish milling of aeronautical hard-to-cut materials, International Journal of Mechatronics and Manufacturing Systems, Vol. 9, No. 4, pp. 370-384.
Prakash D., Tariq M., Davis R., Singh A., Debnath K., 2021, Influence of cryogenic treatment on the performance of micro-EDM tool electrode in machining of magnesium alloy AZ31B, Materials Today: Proceedings, Vol. 39, No. 4, pp. 1198-1201. https://doi.org/10.1016/j.matpr.2020.03.589
Rahul, Datta S., Biswal B.B. 2019, Experimental studies on electro-discharge machining of Inconel 825 super alloy using cryogenically treated tool/workpiece, Measurement, Vol. 145, pp. 611-630. https://doi.org/10.1016/j.measurement.2019.06.006
Ramesh S., Bhuvaneshwari B., Palani G.S., Lad D.M., Mondal K., Gupta R.K., 2019, Enhancing the corrosion resistance performance of structural steel via a novel deep cryogenic treatment process, Vacuum, Vol. 159, pp 468-475
Ranjith R., Somu C., Tharanitharan G., Venkatajalapathi T., Naveenkumar M., 2019, Integrated Taguchi cum grey relational experimental analysis (GREAT) for optimization and machining characterization of cryogenic cooled AA6063 aluminium alloys, Material Today: Proceedings, Vol. 18, No. 7, pp. 3597-3605.
Rao P.S., Kumar S., Khan M.Y., 2020, Comparison of predicted capabilities of MRR parameter using RSM and ANN for dry turning of Inconel 825 alloy using cryogenically treated tungsten carbide tool, Materials Today: Proceedings, In press.
Rout I.S., Pandian P.P., Raj A. 2021, Experimental study of response parameters during machining of Inconel 718 with cryogenically treated ceramic round tool using cutting fluid, Materials Today: Proceedings, In Press, https://doi.org/10.1016/j.matpr.2021.04.573
Okafor A.C., Jasra P.M., 2019, effects of milling methods and cooling strategies on tool wear, chip morphology and surface roughness in high speed end milling of Inconel-718, International Journal of Machining and Machinability of Materials, Vol. 21, No 112, pp. 3-42.
Okponyia K.O. and Oke S.A., 2020, Exploring aluminium alloy metal matrix composites in EDM using coupled factor-level-present worth analysis and fuzzy analytic hierarchy process, International Journal of Industrial Engineering and Engineering Management, Vol. 2, No. 1, pp. 25-44.
Singh A and Grover N.K, 2015, Wear properties of cryogenic treated electrodes on machining of EN-31, Materials Today: Proceedings, Vol. 2, No. 4-5, pp. 1406-1413.
Sivaiah P., Chakradhard D., 2017, Multi-objective optimization of cryogenic turning process using Taguchi-based grey relational analysis, International Journal of Machining and Machinability of Materials, Vol. 19, No. 4, pp. 297-312.
Uysal A., Caudrill J.R, Javahir I.S., 2020, Minimizing carbon emissions and machining costs with improved human health in sustainable machining of austenitic stainless steel through multi-objective optimization, International Journal of Sustainable Manufacturing, Vol. 4, pp. 281-299.
Villa M., Somers M.A.J., 2020, cryogenic treatment of an AISI D2 steel: The role of isothermal martensite formation and martensite conditioning, Cryogenics, Vol. 110, Article 103131
Xue P., Huang, Y., Pauly S., Guo F., Ren Y., Jiang S., Guo F., Fan H., Ning H., 2021, structural evolution of a CuZr-based bulk metallic glass composite during cryogenic treatment observed by in-situ high-energy X-ray diffraction, Journal of Alloys and compounds, Vol. 871, Article 159570
DOI: http://dx.doi.org/10.22441/ijiem.v2i3.12196
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
IJIEM - Indonesian Journal of Industrial Engineering & Management
Program Pascasarjana Magister Teknik Industri Universitas Mercu Buana
Kampus Menteng - Gedung Tedja Buana, Floor 4th
Jl. Menteng Raya No. 29 Jakarta Pusat- Indonesia
Tlp.: +62 21 31935454 Fax: +62 21 31934474
http://publikasi.mercubuana.ac.id/index.php/ijiem
Email: [email protected]
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The journal is indexed by: