Thermal Friction Drilling Process Parametric Optimization for AISI 304 Stainless Steel Using an Integrated Taguchi-Pareto–Grey Wolf-Desirability Function Analysis Optimization Technique

Ugochukwu Sixtus Nwankiti, Sunday Ayoola Oke

Abstract


Thermal friction estimations are presently essential on steel for manufacturing applications as they predict the aggregated energy required for the required process. However, the current thermal friction estimates are inaccurate as they exclude the optimized thresholds of both the input and output quantities. In this article, the optimization of the drilling operation process is accounted for by introducing a new method of combined Taguchi-Pareto–grey wolf-desirability function analysis applied on the AISI 304 stainless steel. An objective function was formulated using the delta values developed from the average signal-to-noise into the response table of the Taguchi method. Besides, the ranks of the parameters through the response table are taken in the reciprocal mode to evaluate the values of the linear program formulated according to the objective function and some constraints taken from the system. Six input parameters were considered tool cylindrical region diameter, friction angle, friction contact area ratio, mouthpiece thickness, feed rate and reciprocal speed. The outputs are the axial force, radial force, hole diameter dimensional error, roundness error and bushing length. These inputs and outputs were analyzed for the optimization process. Based on the results, which were solved using the C++ software, the best value converges in iteration 8 with the starting value of 1699.2. Iteration 1 drops to 11016.3 in six iterations (iterations 2 to 7) and finally converges at 11015.9 in iterations 8 through 20. The usefulness of the effort is to help process engineers to execute cost-effective energy conservation decisions in optimization that could be obtained using optimized thermal friction values.

Keywords


Thermal friction; Taguchi method; grey wolf optimizer; optimization; AISI 304 stainless steel

Full Text:

PDF

References


Ajibade, O.A., Agunsoye, J.O. & Oke, S.A., (2019). Optimization of Water Absorption Parameters of Dual-Filler Filled Composites Using Taguchi and Moderated Taguchi Techniques, Kufa Journal of Engineering, 10(2), 134-151

Alphonse, M., Raja, B.V., Gupta, M. (2021). Optimization of Plasma Nitrided, Liquid Nitrided & PVD Tin-Coated H13-D2 Friction Drilling Tool on AZ31B Magnesium Alloy, Materials Today: Proceedings, 46, 9520-9528. https://doi.org/10.1016/j.matpr.2020.03.791

Alphonse, M., Raja, B.V., Palanikumar, K., Sanjay, S.K.D., Subbaiah, V.B., & Chandra, V.B.L. (2021). Highlights of Non-Traditional Friction Drilling Process: A Review. Materials Today: Proceedings, 46, 3582-3587. https://doi.org/10.1016/j.matpr.2021.01.336

Baraheni, M., Bami, B.A., Alaei, A., & Amini, S. (2021). Ultrasonic-Assisted Friction Drilling Process of Aerospace Aluminum Alloy (AA7075): FEA and Experimental Study. International Journal of Lightweight Materials and Manufacture, 4(3), 315-322. https://doi.org/10.1016/j.ijlmm.2021.03.001

Bilgin, M. (2021). Minimum Quantity Lubrication and Heat-Assisted Friction Drilling of AA7075-T6 Aluminum Alloy. CIRP Journal of Manufacturing Science and Technology, 35, 819-829. https://doi.org/10.1016/j.cirpj.2021.09.011

Boopathi, M., Shankar, S., Manikandakumar, S., & Ramesh, R. (2013). Experimental Investigation of Friction Drilling on Brass, Aluminum and Stainless Steel. Procedia Engineering, 64, 1219-1226. https://doi.org/10.1016/j.proeng.2013.09.201

Bonnet, C., Rech, J., & Poulachon, G. (2020). Characterization of Friction Coefficient for Simulating Drilling Contact for Titanium TiAl6V4 Alloy. CIRP Journal of Manufacturing Science and Technology, 29, 130-137. https://doi.org/10.1016/j.cirpj.2020.03.003

Bustillo, A., Urbikain, G., Perez, J. M., Pereira, O. M., & Lopez de Lacalle, L. N. (2018). Smart Optimization of a Friction-Drilling Process Based on Boosting Ensembles. Journal of Manufacturing Systems, 48, 108-121. https://doi.org/10.1016/j.jmsy.2018.06.004

Can, M., Koluaçik, S., Bahçe, E., Gokce, H., &Tecellioglu, F. S. (2022). Investigation of Thermal Damage in Bone Drilling: Hybrid Processing Method and Pathological Evaluation of Existing Methods. Journal of the Mechanical Behavior of Biomedical Materials, 126, 105030. https://doi.org/10.1016/j.jmbbm.2021.105030

Chow, H., Lee, S., & Yang, L. (2008). Machining Characteristic Study of Friction Drilling on AISI 304 Stainless Steel. Journal of Materials Processing Technology, 207(1-3), 180-186. https://doi.org/10.1016/j.jmatprotec.2007.12.064

Dehghan, S., Ismail, M. I., & Soury, E. (2020). A Thermo-Mechanical Finite Element Simulation Model to Analyze Bushing Formation and Drilling Tool for Friction Drilling of Difficult-To-Machine Materials, Journal of Manufacturing Processes, 57, 1004-1018. https://doi.org/10.1016/j.jmapro.2020.07.022

Dehghan, S., Soury, E., & Ismail, M. I. (2021). A Comparative Study on Machining and Tool Performance in Friction Drilling of Difficult-To-Machine Materials AISI304, Ti-6al-4V, Inconel718. Journal of Manufacturing Processes, 61, 128-152. https://doi.org/10.1016/j.jmapro.2020.10.078

El- Bahloul S.A, El –Shourbagy H.E,Al-Makky M.Y and El-Midany T, (2018). Thermal friction drilling: A review, 15th International Conference on Aerospace Sciences & Aviation Technology (ASAT – 15) May 28 – 30, 2013, Military Technical College, Kobry Elkobbah, Cairo, Egypt, Accessed on 17th December 2021.

El-Bahloul, S. A., El-Shourbagy, H. E., El-Bahloul, A. M., & El-Midany, T. T. (2018). Experimental and Thermo-Mechanical Modeling Optimization of Thermal Friction Drilling for AISI 304 Stainless Steel. CIRP Journal of Manufacturing Science and Technology, 20, 84-92. https://doi.org/10.1016/j.cirpj.2017.10.001

Eliseev, A., Fortuna, S., Kolubaev, E., & Kalashnikova, T. (2017). Microstructure Modification of 2024 Aluminum Alloy Produced by Friction Drilling. Materials Science and Engineering: A, 691, 121-125. https://doi.org/10.1016/j.msea.2017.03.040

Ghalambaz M, Yengejeh R.J and Davami A.H (2021). Building Energy Optimization Using Grey Wolf Optimizer (GWO), Case Studies in Thermal Engineering, 27, https://doi.org/10.1016/j.csite.2021.101250.

Ghani J.A., Jamaluddin H, Rahman M.N.A. and Deros B.M. R., 2013. Philosophy of Taguchi Approach and Method in Design of Experiment. Asian Journal of Scientific Research, 6, 27 – 37. https://doi.org/10.3923/ajsr.2013.27.37.

Hynes R.J, Kumar R, 2017, Process Optimization for Maximizing Bushing Length in Thermal Drilling Using Integrated ANN-SA Approach, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 39, 1. https://doi.org/10.1007/s40430-017-0820-y.

Hynes, J.N., & Kumar, R. (2018).Simulation on Friction Drilling Process of Cu2C. Materials Today: Proceedings, 5(13), 27161-27165. https://doi.org/10.1016/j.matpr.2018.09.026

Jule, L. T., Krishnaraj, R., Nagaprasad, N., Stalin, B., Vignesh, V., &Amuthan, T. (2021). Evaluate the Structural and Thermal Analysis of Solid and Cross Drilled Rotor by Using Finite Element Analysis. Materials Today: Proceedings, 47, 4686-4691. https://doi.org/10.1016/j.matpr.2021.05.544

Kamble, Y., Rajiv, B., & Jadhav, P. (2021). Experimental Investigation and Dimensional Analysis of Friction Drilled Hole on 6082 Aluminum Pipe Using Hardened M2 Center Drill. Materials Today: Proceedings, 42, 1239-1243. https://doi.org/10.1016/j.matpr.2020.12.874

Karabulut, Ş., &Bilgin, M. (2021). Friction Drilling of AA7075-T6 and AZ31B Alloys Under Dry and Oil-Containing Ceramic Particulates. Journal of Manufacturing Processes, 65, 70-79. https://doi.org/10.1016/j.jmapro.2021.03.016

Kumar, R., &Hynes, J.N. R. (2020). Prediction And Optimization Of Surface Roughness In Thermal Drilling Using Integrated ANFIS And GA Approach. Engineering Science and Technology, an International Journal, 23(1), 30-41. https://doi.org/10.1016/j.jestch.2019.04.011

Kumar, R., &Hynes, J.N. R. (2019). Thermal Drilling Processing on Sheet Metals: A Review. International Journal of Lightweight Materials and Manufacture, 2(3), 193-205. https://doi.org/10.1016/j.ijlmm.2019.08.003

Kumar, R., Hynes, J. N. R., Pruncu, C. I., &Sujana, J.J. A. (2019). Multi-Objective Optimization of Green Technology Thermal Drilling Process Using Grey-Fuzzy Logic Method. Journal of Cleaner Production, 236, 117711. https://doi.org/10.1016/j.jclepro.2019.117711

Lee, S. M., Chow, H. M., Huang, F. Y., & Yan, B. H. (2009). Friction Drilling of Austenitic StainlSess Steel by Uncoated and PVD AlCRN- and TiAlN-Coated Tungsten Carbide Tools. International Journal of Machine Tools and Manufacture, 49(1), 81-88. https://doi.org/10.1016/j.ijmachtools.2008.07.012

Miller, S. F., Tao, J., & Shih, A. J. (2006). Friction Drilling of Cast Metals. International Journal of Machine Tools and Manufacture, 46(12-13), 1526-1535. https://doi.org/10.1016/j.ijmachtools.2005.09.003

Monroe, 2019, What is friction drilling? https://monroeengineering.com/blog/what-is-friction-drilling/, Accessed on 4th December 2021

Pereira, O., Urbikaín, G., Rodríguez, A., Calleja, A., Ayesta, I., &López de Lacalle, L. 2019. Process Performance and Life Cycle Assessment of Friction Drilling on Dual-Phase Steel. Journal of Cleaner Production, 213, 1147-1156. https://doi.org/10.1016/j.jclepro.2018.12.250

Shalamov, P. V., Chvanova, A. Y., Pivtsaeva, M. S., &Shamgunov, A. E. (2021). Study of Geometrical Parameters of Flanged Edges of Holes Formed by Thermal Drilling With a Combined Tool. Materials Today: Proceedings, 38, 1915-1918. https://doi.org/10.1016/j.matpr.2020.09.044

Shalamov, P., Kulygina, I., &Yaroslavova, E. (2016).ANSYS Software-Based Study of Thermal Drilling Process. Procedia Engineering, 150, 746-752. https://doi.org/10.1016/j.proeng.2016.07.098

Shalamov, P., Pivtsaeva, M., Chvanova, A., &Shamgunov, A. (2021).Use of Combined Tools to Reduce Axial Force During Thermal Drilling. Materials Today: Proceedings, 38, 1931-1935. https://doi.org/10.1016/j.matpr.2020.09.071

Wang, J., Xue, Q., Liu, B., Li, L., Li, F., Zhang, K., &Zang, Y. (2020). Experimental Measurement on Friction Performance of PDC Bearings for Oil Drilling Under Different Working Conditions. Measurement, 163, 107988. https://doi.org/10.1016/j.measurement.2020.107988

Wheatherl M., 2021, Drilling automation and innovation-2021, Journal of Petroleum Technology, Vol. 73, No. 2, pp.1.

Wu, H., Clarke, R., Porter, M., Ward, R., Quinn, J., McGarrigle, C., & McFadden, S. (2021). Thread-Stripping Test Procedures Leading to Factors of Safety Data for Friction-Drilled Holes in Thin-Section Aluminum Alloy. Thin-Walled Structures, 163, 107653.https://doi.org/10.1016/j.tws.2021.107653

Zhang, K., Min, J., Wan, H., Liao, P., & Lin, J. (2022).Thermo-Mechanical Modeling of Flow Drilling With a Conical-Tipped Blind Rivet. CIRP Journal of Manufacturing Science and Technology, 36, 158-171. https://doi.org/10.1016/j.cirpj.2021.12.003




DOI: http://dx.doi.org/10.22441/ijiem.v3i3.15444

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

IJIEM - Indonesian Journal of Industrial Engineering & Management
Program Pascasarjana Magister Teknik Industri Universitas Mercu Buana
Kampus Menteng - Gedung Tedja Buana, Floor 4th  
Jl. Menteng Raya No. 29  Jakarta Pusat- Indonesia
Tlp.: +62 21 31935454 Fax: +62  21 31934474
http://publikasi.mercubuana.ac.id/index.php/ijiem

Email:  [email protected]

 

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

 

Web Analytics Made Easy - Statcounter View My Stats

The journal is indexed by: