Analisis Sentimen Ulasan Pelanggan menggunakan Algoritma Naive Bayes dan Logistic Regression

Faris Izzuddin Daffa', Abhyasa Danu Brata, Dewa Angga Fajar Adji Pangestu

Abstract


Ulasan pelanggan dapat digunakan untuk menggali preferensi konsumen dan memberikan panduan untuk perbaikan produk. Dengan ketersediaan data ulasan pelanggan yang melimpah, penting untuk mendapatkan wawasan yang berharga dari data ini guna meningkatkan kepuasan pelanggan. Penelitian ini memberikan wawasan berharga bagi produsen untuk memahami kepuasan pelanggan, meningkatkan kualitas produk, dan mengambil tindakan yang sesuai berdasarkan sentimen yang diungkapkan dalam ulasan. Metode yang diterapkan dalam penelitian ini dengan penggunaan Naive Bayes dan Logistic Regression sebagai algoritma klasifikasi sentimen. Dengan penerapan metode Term Frequency-Inverse Document Frequency, dilakukan ekstraksi fitur untuk mengidentifikasi kata-kata yang memiliki tingkat penting yang tinggi dalam ulasan tersebut. Dalam penelitian ini, ditemukan bahwa setelah dilakukan balancing data dengan menggunakan metode Synthetic Minority Over-sampling Technique, akurasi dari kedua metode, yaitu Naive Bayes dan Logistic Regression, mengalami peningkatan yang sebelum dilakukan balancing, metode Naive Bayes mencapai akurasi sebesar 87,14%, yang meningkat menjadi 92,31 setelah dilakukan balancing data. Sementara itu, Logistic Regression mencapai akurasi sebesar 93,77%, yang meningkat menjadi 94,56% setelah dilakukan balancing data. Hasil penelitian ini menunjukkan bahwa kedua metode, Naive Bayes dan Logistic Regression, efektif dalam mengklasifikasikan ulasan pelanggan ke dalam kategori sentimen positif dan negatif. Penelitian ini memberikan wawasan berharga bagi produsen es krim Ben & Jerry dalam memahami persepsi pelanggan terhadap produk mereka dan mengidentifikasi area-area yang perlu diperbaiki untuk meningkatkan kualitas produk dan kepuasan pelanggan.

Keywords


Sentiment;Review;Customer;Naive Bayes;Logistic Regression

Full Text:

PDF

References


P. K. Sari, A. Alamsyah, and S. Wibowo, “Measuring e-Commerce service quality from online customer review using sentiment analysis,” Journal of Physics: Conference Series, vol. 971, 2018. DOI: https://doi.org/10.1088/1742-6596/971/1/012053

E. Manohar, P. Jenifer, M. S. Nisha and B. Benita, “A Collective Data Mining Approach to Predict Customer Behavior,” 2021 Third International Conference on Intelligent Communication Technologies and Virtual Mobile Networks (ICICV), pp. 1310-1316, 2021. DOI: 10.1109/ICICV50876.2021.9388558.

A. Bagheri, M. Saraee, F. D. Jong, “Care more about customers: unsupervised domain-independent aspect detection for sentiment analysis of customer reviews,” Knowledge Based System, vol. 52, pp. 201-213, 2013.

A. H. A. Rasib , M. Musazzali, R. Abdullah, H. Boejang, H. Hanizam, Z. F. M. Rafaai, “Process Capability Study for Improvement of Product Realibility at Food and Beverage Industry,” Journal of Engineering Science and Technology, vol. 18, no. 1, pp. 357 - 375, 2023.

I. P. Tussyadiah, ‘‘Factors of satisfaction and intention to use peer-to-peer accommodation,’’ International Journal of Hospitality Management, vol. 55, pp. 70–80, May 2016, DOI: 10.1016/j.ijhm.2016.03.005

M. Li, Y. Ma and P. Cao, “Revealing Customer Satisfaction With Hotels Through Multi-Site Online Reviews: A Method Based on the Evidence Theory,” in IEEE Access, vol. 8, pp. 225226-225239, 2020. DOI: 10.1109/ACCESS.2020.3044252

A. Kumar, and T. M. Sebastian, “Sentiment Analysis: A Perspective on its Past, Present and Future,” International Journal Intelligent Systems and Applications, vol. 4, no 10, pp. 1-14, 2012.

A. Kaur, and V. Gupta, “A Survey on Sentiment Analysis and Opinion Mining Techniques,” Journal of Emerging Technologies in Web Intelligence, vol. 5, no. 4, pp. 367-371, 2013.

R. A. Laksono, K. R. Sungkono, R. Sarno and C. S. Wahyuni, “Sentiment Analysis of Restaurant Customer Reviews on TripAdvisor using Naïve Bayes,” 2019 12th International Conference on Information & Communication Technology and System (ICTS), pp. 49-54, 2019. DOI: 10.1109/ICTS.2019.8850982.

P. Dhanalakshmi, G. A. Kumar, B. S. Satwik, K. Sreeranga, A. T. Sai, and G. Jashwanth, “Sentiment Analysis Using VADER and Logistic Regression Techniques,” 2023 International Conference on Intelligent Systems for Communication, IoT and Security (ICISCoIS), pp. 139-144, 2023. DOI: 10.1109/ICISCoIS56541.2023.10100565

W. Guo, “Applications of Logistic Regression and Naive Bayes in Commodity Sentiment Analysis,” 4th International Conference on Image, Video and Signal Processing (IVSP 2022), pp 224–230, 2022. DOI: https://doi.org/10.1145/3531232.3531265

U. B. Mahadevaswamy and P. Swathi, “Sentiment Analysis using Bidirectional LSTM Network,” Procedia Computer Science, vol. 218, pp. 45–56, Jan. 2023, doi: 10.1016/j.procs.2022.12.400.

M. Alkaff, A. Rizky Baskara, and Y. Hendro Wicaksono, “Sentiment Analysis of Indonesian Movie Trailer on YouTube Using Delta TF-IDF and SVM,” in 2020 Fifth International Conference on Informatics and Computing (ICIC), Nov. 2020, pp. 1–5. doi: 10.1109/ICIC50835.2020.9288579.

R. Fiebrink, and M. Gillies, “Introduction to the Special Issue on Human-Centered Machine Learning,” ACM Transactions on Interactive Intelligent Systems, vol. 8, no. 2, June 2018. DOI: https://doi.org/10.1145/3205942

D. A. Omondiagbe, S. Veeramani, and A. S. Sidhu, “Machine Learning Classification Techniques for Breast Cancer Diagnosis,” IOP Conference Series: Materials Science and Engineering, vol. 495, 2019.

W. B. Zulfikar, A. R. Atmadja, and S. F. Pratama, “Sentiment Analysis on Social Media Against Public Policy Using Multinomial Naive Bayes,” Scientific Journal of Informatics, vol. 10, no. 1, pp. 25-34, 2023.

S. A. Rahmaningrum, and P. P. Oktaviana, “Sentiment classification of hotel service review on traveloka sites using naïve bayes classifier (NBC) and binary logistic regression,” Journal of Physics: Conference Series, vol. 1490, 2020, DOI: https://dx.doi.org/10.1088/1742-6596/1490/1/012065

N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, ‘‘SMOTE: Synthetic minority over-sampling technique,’’ J. Artif. Intell. Res., vol. 16, pp. 321–357, Jun. 2002.




DOI: http://dx.doi.org/10.22441/jitkom.v9i2.003

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Jurnal Ilmu Teknik dan Komputer

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Jurnal Ilmu Teknik dan Komputer
Alamat Redaksi:
Pusat Penelitian Universitas Mercu Buana Jakarta,
Gedung D Lantai 1, Jalan Meruya Selatan No. 01, Kembangan, Jakarta Barat 11650.
Telepon 021-5840816 Pesawat 3451 Fax. 021-5840813.
Homepage : http://www.mercubuana.ac.idEmail : [email protected]
P-ISSN 2548-740X
E-ISSN 2621-1491

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Web Analytics Made Easy - StatCounter
View My Stats