Klasifikasi Citra Hasil Potret Daun Tanaman Jagung Menggunakan Transfer Learning Deep Learning

Zendi Iklima, Yananto Mihadi Putra

Abstract


Penyakit pada tanaman jagung dapat mempengaruhi produksi jagung,menghambat pertumbuhan tanaman jagung, penurunan kualitas jagung, dan kelangkaan jagung yang memicu kenaikan harga jagung. Hama serangga menjadi salah satu ancaman pada tanaman jagung. Kerusakan yang diakibatkan oleh hama serangga dapat dirasakan secara langsung dengan adanya daun – daun yang berlubang. Pendeteksian lebih dini dapat membantu para petani untuk memaksimalkan hasil panen. Teknik pembelajaran mesin menjadi salah satu teknologi yang telah digunakan untuk menyederhanakan proses klasifikasi penyakit pada daun. Dataset yang digunakan ialah hasil potret citra pada daun tanaman jagung yang sehat dan berlubang akibat hama. Dari beberapa metode yang ada, Convolutional Neural Network (CNN) menjadi metode yang paling optimal dalam domain klasifikasi tersebut. Peneltian ini menggunakan model deep learning terlatih yaitu transfer learning model yang sudah dilatih menggunakn berbagai macam dataset yang beragam. Adapun beberapa transfer learning model seperti MobileNet, VGG, Inception, dan lainnya. Hasil pengujian menunjukkan bahwa model VGG16 dan model Inception_V3 memiliki nilai akurasi paling tinggi dengan nilai akurasi 94.44%, dilanjutkan dengan model MobileNet dengan nilai akurasi 91.67%, model Xception dengan nilai akurasi 88.89%, dan model Inception_ResNet_V2 memiliki nilai akurasi paling rendah dengan nilai akurasi 87.50%.

Keywords


Citra; Convolutional Neural Network (CNN); Daun; Jagung; Transfer Learning Model

Full Text:

PDF

References


K. P. Panigrahi, A. K. Sahoo and H. Das, "A CNN Approach for Corn Leaves Disease Detection to support Digital Agricultural System," 2020 4th International Conference on Trends in Electronics and Informatics (ICOEI)(48184), Tirunelveli, India, 2020, pp. 678-683, doi: 10.1109/ICOEI48184.2020.9142871.

T. Miedaner and P. Juroszek, “Global warming and increasing maize cultivation demand comprehensive efforts in disease and insect resistance breeding in north‐western Europe,” Plant Pathology, vol. 70, no. 5, pp. 1032–1046, Feb. 2021, doi: https://doi.org/10.1111/ppa.13365.

A. Aripin et al., “Serangan Ulat Grayak Jagung (Spodoptera Frugiperda) pada Tanaman Jagung di Desa Petir, Kecamatan Daramaga, Kabupatem Bogor dan Potensi Pengendaliannya Menggunakan Metarizhium Rileyi,” Jurnal Pusat Inovasi Masyarakat, vol. 2, no. 6, pp. 931‒939–931‒939, 2020, Accessed: Jan. 15, 2025. [Online]. Available: https://journal.ipb.ac.id/index.php/pim/article/view/33263

Y. Maharani, V. K. Dewi, L. T. Puspasari, L. Rizkie, Y. Hidayat, and D. Dono, “Cases of Fall Army Worm Spodoptera frugiperda J. E. Smith (Lepidoptera: Noctuidae) Attack on Maize in Bandung, Garut and Sumedang District, West Java.,” Cropsaver Journal of Plant Protection, vol. 2, no. 1, pp. 38–38, Jun. 2019, doi: https://doi.org/10.24198/cropsaver.v2i1.23013.

Muhammad, L. S. Chua, F. R. Rahmad, F. I. Abdullah, and W. Alwi, “Review on Techniques for Plant Leaf Classification and Recognition,” Computers, vol. 8, no. 4, pp. 77–77, Oct. 2019, doi: https://doi.org/10.3390/computers8040077.

M. Hussain, J. J. Bird, and D. R. Faria, “A Study on CNN Transfer Learning for Image Classification,” Advances in intelligent systems and computing, pp. 191–202, Aug. 2018, doi: https://doi.org/10.1007/978-3-319-97982-3_16.

M. Sardogan, A. Tuncer and Y. Ozen, "Plant Leaf Disease Detection and Classification Based on CNN with LVQ Algorithm," 2018 3rd International Conference on Computer Science and Engineering (UBMK), Sarajevo, Bosnia and Herzegovina, 2018, pp. 382-385, doi: 10.1109/UBMK.2018.8566635.

S. Ghosal and K. Sarkar, "Rice Leaf Diseases Classification Using CNN With Transfer Learning," 2020 IEEE Calcutta Conference (CALCON), Kolkata, India, 2020, pp. 230-236, doi: 10.1109/CALCON49167.2020.9106423.

Z. ur Rehman et al., “Recognizing apple leaf diseases using a novel parallel real‐time processing framework based on MASK RCNN and transfer learning: An application for smart agriculture,” IET Image Processing, vol. 15, no. 10, pp. 2157–2168, Mar. 2021, doi: https://doi.org/10.1049/ipr2.12183.

M. Sibiya and M. Sumbwanyambe, “A Computational Procedure for the Recognition and Classification of Maize Leaf Diseases Out of Healthy Leaves Using Convolutional Neural Networks,” AgriEngineering, vol. 1, no. 1, pp. 119–131, Mar. 2019, doi: https://doi.org/10.3390/agriengineering1010009.

A. Waheed, M. Goyal, D. Gupta, A. Khanna, Aboul Ella Hassanien, and H. M. Pandey, “An optimized dense convolutional neural network model for disease recognition and classification in corn leaf,” Computers and Electronics in Agriculture, vol. 175, pp. 105456–105456, Jun. 2020, doi: https://doi.org/10.1016/j.compag.2020.105456.

A. Fujishiro, Y. Nagamura, T. Usami and M. Inoue, "Minimization of CNN Training Data by using Data Augmentation for Inline Defect Classification," 2020 International Symposium on Semiconductor Manufacturing (ISSM), Tokyo, Japan, 2020, pp. 1-4, doi: 10.1109/ISSM51728.2020.9377504.

I. K. G. Darma Putra, R. Fauzi, D. Witarsyah, and I. P. D. Jayantha Putra, “Classification of Tomato Plants Diseases Using Convolutional Neural Network”, Int. J. Adv. Sci. Eng. Inf. Technol., vol. 10, no. 5, pp. 1821–1827, Oct. 2020.

Ü. Atila, M. Uçar, K. Akyol, and E. Uçar, “Plant leaf disease classification using EfficientNet deep learning model,” Ecological Informatics, vol. 61, p. 101182, Mar. 2021, doi: https://doi.org/10.1016/j.ecoinf.2020.101182.

E. Prasetyo, R. Purbaningtyas, R. D. Adityo, E. T. Prabowo, and A. I. Ferdiansyah, “Perbandingan Convolution Neural Network Untuk Klasifikasi Kesegaran Ikan Bandeng Pada Citra Mata,” Jurnal Teknologi Informasi dan Ilmu Komputer, vol. 8, no. 3, pp. 601–601, Jun. 2021, doi: https://doi.org/10.25126/jtiik.2021834369.

Sandhopi, Lukman Zaman P.C.S.W, and Y. Kristian, “Identifikasi Motif Jepara pada Ukiran dengan Memanfaatkan Convolutional Neural Network,” Jurnal Nasional Teknik Elektro dan Teknologi Informasi (JNTETI), vol. 9, no. 4, pp. 403–413, Dec. 2020, doi: https://doi.org/10.22146/jnteti.v9i4.541.

M. R. Alwanda, R. P. K. Ramadhan, and D. Alamsyah, “Implementasi Metode Convolutional Neural Network Menggunakan Arsitektur LeNet-5 untuk Pengenalan Doodle,” Jurnal Algoritme, vol. 1, no. 1, pp. 45–56, Oct. 2020, doi: https://doi.org/10.35957/algoritme.v1i1.434.

D. Singh, V. Kumar, None Vaishali, and M. Kaur, “Classification of COVID-19 patients from chest CT images using multi-objective differential evolution–based convolutional neural networks,” European Journal of Clinical Microbiology & Infectious Diseases, vol. 39, no. 7, pp. 1379–1389, Apr. 2020, doi: https://doi.org/10.1007/s10096-020-03901-z.

S. Gurung and Y. R. Gao, "Classification of Melanoma (Skin Cancer) using Convolutional Neural Network," 2020 5th International Conference on Innovative Technologies in Intelligent Systems and Industrial Applications (CITISIA), Sydney, Australia, 2020, pp. 1-8, doi: 10.1109/CITISIA50690.2020.9371829.

S. Hassantabar, M. Ahmadi, and A. Sharifi, “Diagnosis and detection of infected tissue of COVID-19 patients based on lung x-ray image using convolutional neural network approaches,” Chaos Solitons & Fractals, vol. 140, pp. 110170–110170, Jul. 2020, doi: https://doi.org/10.1016/j.chaos.2020.110170.

E. Ihsanto, K. Ramli, D. Sudiana, and T. S. Gunawan, “An Efficient Algorithm for Cardiac Arrhythmia Classification Using Ensemble of Depthwise Separable Convolutional Neural Networks,” Applied Sciences, vol. 10, no. 2, p. 483, Jan. 2020, doi: https://doi.org/10.3390/app10020483.

N. K. Chowdhury, M. M. Rahman, and M. A. Kabir, “PDCOVIDNet: a parallel-dilated convolutional neural network architecture for detecting COVID-19 from chest X-ray images,” Health Information Science and Systems, vol. 8, no. 1, Sep. 2020, doi: https://doi.org/10.1007/s13755-020-00119-3.

S. Sukegawa et al., “Deep Neural Networks for Dental Implant System Classification,” Biomolecules, vol. 10, no. 7, pp. 984–984, Jul. 2020, doi: https://doi.org/10.3390/biom10070984.

F. Demir, “Deep autoencoder-based automated brain tumor detection from MRI data,” Elsevier eBooks, pp. 317–351, Jan. 2022, doi: https://doi.org/10.1016/b978-0-323-91197-9.00013-8.

S. K. Arjaria, A. S. Rathore, and J. S. Cherian, “Kidney disease prediction using a machine learning approach: A comparative and comprehensive analysis,” Elsevier eBooks, pp. 307–333, Jan. 2021, doi: https://doi.org/10.1016/b978-0-12-821633-0.00006-4.




DOI: http://dx.doi.org/10.22441/jitkom.v8i2.008

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Jurnal Ilmu Teknik dan Komputer

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Jurnal Ilmu Teknik dan Komputer
Alamat Redaksi :
Pusat Penelitian Universitas Mercu Buana Jakarta,
Gedung D Lantai 1, Jalan Meruya Selatan No. 01, Kembangan, Jakarta Barat 11650.
Telepon 021-5840816 Pesawat 3451 Fax. 021-5840813.
Homepage : http://www.mercubuana.ac.id Email : [email protected]
P-ISSN 2548-740X
E-ISSN 2621-1491

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Web Analytics Made Easy - StatCounter
View My Stats