Inovasi dan Optimasi Metode Pirolisis Material Karbon berbasis Serat Bulu Ayam untuk Aplikasi Material Penyimpan Hidrogen

Deni Shidqi Khaerudini

Abstract


Pembuatan material karbon dari limbah serat bulu ayam telah dilakukan untuk mengkaji optimasi metode pirolisis dengan variasi waktu tahan dan temperatur terhadap struktur, luas permukaan, pori, dan morfologi. Inovasi metode pirolisis two-step yang digunakan yaitu untuk mencapai proses karbonisasi optimal berbasis serat bulu ayam. Metode pirolisis dengan variasi two step berdurasi lama, yaitu step one pada temperatur 215 oC selama 15 jam dan dilanjutkan step two dengan variasi pada temperatur 400, 425, dan 450 oC dengan masing-masing variasi waktu tahan selama 1 dan 0,5 jam. Variasi selanjutnya, inovasi metode pirolisis two-step dilakukan dengan kondisi waktu tahan berdurasi singkat, yaitu: step one pada temperatur 200 oC selama 1 jam dan step two pada temperatur 400 oC selama 1 dan 0,5 jam. Laju pemanasan dan pendinginan yang digunakan yaitu 3 oC/menit. Berdasarkan hasil uji true density, nilai densitas semakin kecil pada waktu tahan yang lama dan temperatur karbonisasi terendah. Hasil pengamatan Field Emission Scanning Electron Microscopy (FESEM) menunjukkan bahwa morfologi permukaan karbon dengan nilai densitas terkecil telah terbentuk pori. Hasil uji Brunnaeur-Emmet-Teller (BET) menunjukkan bahwa pori dan luas permukaan tertinggi terbentuk pada karbon dengan densitas terkecil. Berdasarkan hasil pengujian difraksi sinar-X (XRD), menunjukkan struktur karbon berupa semikristalin.

Keywords


Pirolisis, serat bulu ayam, karbon, material penyimpan hidrogen

Full Text:

PDF

References


. Bossel U., Eliason B. (2003). Energy and the Hydrogen Economy. Hydrogen Economy Report. [Online] Available at: https://afdc.energy.gov/files/pdfs/hyd_economy_bossel_eliasson.pdf [Accessed: 20.01.2019].

. Lipman T. (2011). An Overview Hydrogen Production and Storage System with Renewable Hydrogen Case Studies. A Clean Energy State Alliance Report. [Online] Available at: https://www.cesa.org/assets/2011-Files/Hydrogen-and-Fuel-Cells/CESA-Lipman-H2-prod-storage-050311.pdf [Accessed: 20.01.2019].

. Senoz, E., Wool, R. P. (2011). Hydrogen Storage on Pyrolyzed Chicken Feather Fibers. International Journal of Hydrogen Energy. 36(12): 7122-7127.

. Senoz, E., Wool, R. P. (2010). Microporous Carbon-Nitrogen Fibers from Keratin Fibers by Pyrolysis. Journal of Applied Polymer Science. 118(3): 1752-1765.

. Kamil. K, Krzysztoforskic, J., Bajer, K., Dudynsk, M.. Bioenergy from Feathers Gasification - Efficiency and Performance Analysis. Biomass and Bioenergy. 59: 402-411.

. Buczek, B. (2016). Preparation of Active Carbon by Additional Activation with Potassium Hydroxide and Characterization of Their Properties. Advances in Materials Science and Engineering. 2016: 1-4

Li, S., Han K., Si, P., Li, J. Lu, C. (2018). High–performance Activated Carbons Prepared by KOH Activation of Gulfweed for Supercapacitors. Int. J. Electrochem. Sci. 13: 1728-1743.

. Haaland, D. (1976). Graphite-liquid-vapor triple point pressure and the density of liquid carbon. Carbon. 14(6): 357-361.

. Lowell, S., Shields, J.E., Thomas, M.A., Thommes, M. (2004). Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density. Netherland: Springer Science+Business Media B.V. 58.

. Sansonetti J. E., Martin W. C. (2005). Handbook of Basic Atomic Spectroscopic Data, J. Phys. Chem. Ref. Data. 34(4): 1559-2259.

. Rahm M., Hoffmann R., Ashcrof N. W. (2016). Atomic and Ionic Radii of Elements 1–96. Chem. Eur. J. 22: 14625-14632.

. Periodic Tabel of Elements, Los Alomos National Laboratory (LANL), USA. [Online] Available at: https://periodic.lanl.gov/1.shtml [Accessed: 20.01.2019].

. Zuttel, A. (2003). Materials for Hydrogen Storage. Materials Today. 6(9): 24-33

. Schlapbach, L., Zuttel, A. (2001). Hydrogen-Storage Materials for Mobile Applications. Nature. 414: 353-358.

. Simonovski, I., Baraldi, D., Melideo, D., Acosta-Iborra, B. (2015). Thermal Simulations of a Hydrogen Storage Tank during Fast Filling. International Journal of Hydrogen Energy. 40(36): 12560-12571.

. Liu, X., Peaslee, D., Jost, C., Baumann T. F., Majzoub, E. H. (2011). Systematic Pore-Size Effects of LiBH4; Elimination of Diborane Release and Tunable Behavior for Hydrogen Storage Application. Chemistry of Materials. 23(5): 1331-1336.

. Gross, A. F., Vajo, J. J., Van Atta S. L., Olson G. L. (2008). Enhanced Hydrogen Storage Kinetics of LiBH4 in Nanoporous Carbon Scaffolds. Journal of Physical Chemistry C. 112(14): 5651-5657.




DOI: http://dx.doi.org/10.22441/jtm.v7i3.5002

Refbacks

  • There are currently no refbacks.


Copyright (c) 2019 Jurnal Teknik Mesin

Jurnal Teknik Mesin (JTM)
Program Studi Teknik Mesin, Fakultas Teknik, Universitas Mercu Buana
Jl. Meruya Selatan No. 01, Kembangan, Jakarta Barat 11650, Indonesia
Email: [email protected]
Telp.: 021-5840815/ 021-5840816 (Hunting)
Fax.: 021-5871335

JTM is indexed by the following abstracting and indexing services:

 

 

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

View My Stats