Evaluation of the Performance of Corroded Concrete with Bottom Ash and Bacteria using Resistivity and Impact Echo Techniques

Ahmad Zaki, Salma Azizah, Sri Atmaja P. Rosyidi, Khairil Mahbubi, Zainah Ibrahim

Abstract


Concrete is a significant contributor to global emissions, necessitating the development of environmentally friendly alternatives. This study explores the use of reinforced concrete (RC) incorporating industrial by-products, specifically bottom ash (BA), as a partial sand replacement to address this issue. Additionally, the study examines the potential of Bacillus subtilis bacteria to enhance the self-repair capabilities of corroded RC with BA. Concrete mixtures with 10%, 20%, and 30% BA were prepared and subjected to accelerated corrosion for 48, 96, and 168 hours. The corroded RC specimens were then tested for compressive strength, flexural strength, corrosion rate, non-destructive testing (NDT) methods, and SEM analysis. NDT methods included impact echo (IE) and resistivity techniques. Results showed that increasing BA content led to a decrease in corrosion resistance, with current measurements of 2.07, 1.64, and 1.47 amperes for 10%, 20%, and 30% BA, respectively. After 168 hours of corrosion, the IE frequency of the Bacillus subtilis-treated specimens was 2561.04 Hz, the lowest among all samples, while the 30% BA specimen exhibited the highest frequency at 7924.81 Hz. Resistivity measurements after 168 hours showed lower resistivity in Bacillus subtilis-treated specimens (18.25 kΩ·cm) compared to the 20% BA specimen (29.27 kΩ·cm). These findings suggest that the addition of BA and Bacillus subtilis bacteria can reduce the corrosion risk in concrete, making it a viable alternative to traditional RC.


Keywords


Bottom Ash; Concrete; Corrosion; NDT Method; Self-Healing;

Full Text:

PDF


DOI: http://dx.doi.org/10.22441/sinergi.2025.2.003

Refbacks

  • There are currently no refbacks.


SINERGI
Published by:
Fakultas Teknik Universitas Mercu Buana
Jl. Raya Meruya Selatan, Kembangan, Jakarta 11650
Tlp./Fax: +62215871335
p-ISSN: 1410-2331
e-ISSN: 2460-1217
Journal URL: http://publikasi.mercubuana.ac.id/index.php/sinergi
Journal DOI: 10.22441/sinergi

Creative Commons License

Journal by SINERGI is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

Web
Analytics Made Easy - StatCounter
View My Stats

The Journal is Indexed and Journal List Title by: