DIAGNOSIS OF INDUCTION MOTOR BEARING DEFECT USING DISCRETE WAVELET TRANSFORM AND ARTIFICIAL NEURAL NETWORK
Abstract
Induction motor is electromechanical equipment that is widely used in various industrial applications. The research paper presents the detection of the defect to three-phase induction motor bearing using discrete wavelet transforms and artificial neural networks to detect whether or not the motor is damaged. An experimental test rig was made to obtain data on healthy phase currents or damaged bearings on the induction motor using the motor current signature analysis (MCSA) method. Several mother-level wavelets are chosen on the wavelet method from the obtained current signal. The feature of the wavelet results is used as an input of the Artificial Neural Network to classify the condition of the induction motor. The results showed that the system could provide an accurate diagnosis of the condition of the induction motor.
Keywords
Full Text:
PDFDOI: http://dx.doi.org/10.22441/sinergi.2021.1.005
Refbacks
- There are currently no refbacks.
SINERGI
Published by:
Fakultas Teknik Universitas Mercu Buana
Jl. Raya Meruya Selatan, Kembangan, Jakarta 11650
Tlp./Fax: +62215871335
p-ISSN: 1410-2331
e-ISSN: 2460-1217
Journal URL: http://publikasi.mercubuana.ac.id/index.php/sinergi
Journal DOI: 10.22441/sinergi
Journal by SINERGI is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License
The Journal is Indexed and Journal List Title by: