Optimization of MQL-Turning Process Parameters to Produce Environmentally-Benign AISI 4340 Alloy with Nano-Lubricants using Cuckoo Search Algorithm
Abstract
Keywords
Full Text:
PDFReferences
Arun, K., & Devendiran, S. 2023. Investigation, optimising the MQL-turning parameters of nimonic 75 using weighted mayfly algorithm. Advances in Materials and Processing Technologies, pp. 1-18. https://doi.org/10.1080/2374068x.2023.2198801
Dhar, N., Kamruzzaman, M., & Ahmed, M. 2006.Effect of minimum quantity lubrication (MQL) on tool wear and surface roughness in turning AISI-4340 steel. Journal of Materials Processing Technology, Vol. 172, No. 2, pp. 299-304. https://doi.org/10.1016/j.jmatprotec.2005.09.022
Dubey, V., Sharma, A. K., Vats, P., Pimenov, D. Y., Giasin, K., & Chuchala, D. 2021.Study of a multi-criterion decision-making approach to the MQL turning of AISI 304 steel using hybrid nano cutting fluid. Materials, Vol. 14, no. 23, 7207. https://doi.org/10.3390/ma14237207
Gupta, M.K., Song, Q., Liu, Z., Pruncu, C.I., Mia, M., Singh, G., Lozano, J.A., Carou, D., Khan, A. M., Jamil, M., Pimenov, D.Y. 2020, Machining characteristics based life cycle assessment in eco-benign turning of pure titanium alloy, Journal of Cleaner Production, Vol. 251, Article 119598. https://doi.org/10.1016/j.jclepro.2019.119598
Karpat, Y., & Özel, T. 2006. Multi-objective optimization for turning processes using neural network modeling and dynamic-neighbourhood particle swarm optimization. The International Journal of Advanced Manufacturing Technology, Vol. 35, No. 3-4, pp. 234-247. https://doi.org/10.1007/s00170-006-0719-8
Mithu, M., Khan, M., & Dhar, N. R. 2008. Effects of minimum quantity lubrication (MQL) on chip formation mode, tool wear, and surface roughness in turning AISI-1040 steel with uncoated carbide tool. Journal for Manufacturing Science and Production, Vol. 9, No. 1-2, 107-118. https://doi.org/10.1515/ijmsp.2008.9.1-2.107
Ozule, C.P., Oke, S.A. and Nwankiti, U.S. 2022, Optimizing the process parameters for eco-friendly minimum quantity lubrication-turning of AISI 4340 alloy with nano-lubricants using a grey wolf optimization approach, Indonesian Journal of Industrial Engineering & Management, Vol. 3, No. 3, pp. 210-223. http://dx.doi.org/10.22441/ijiem.v3i3.15519
Patole, P., &Kulkarni, V. 2018. Parametric optimization of minimum quantity lubrication in turning of AISI 4340 using nanofluids. Materials Today: Proceedings, Vol.5, No. 5, pp. 12419-12425. https://doi.org/10.1016/j.matpr.2018.02.221
Philip, S, D., Chandramohan, P. & Mohanraj, M. 2014. Optimization of surface roughness, cutting force and tool wear of nitrogen alloyed duplex stainless steel in a dry turning process using Taguchi method. Measurement, Vol. 49, pp. 205-215. https://doi.org/10.1016/j.measurement.2013.11.037
Prabhu, S., & Vinayagam, B. K. 2011. Fractal dimensional surface analysis of AISI D2 tool steel material with nanofluids in grinding process using atomic force microscopy. Journal of the Brazilian Society of Mechanical Sciences and Engineering, Vol.33, No. 4, pp. 459-466. https://doi.org/10.1590/s1678-58782011000400009
Sahoo, A. K., &Sahoo, B. 2012. Experimental investigations on machinability aspects in finish hard turning of AISI 4340 steel using uncoated and multilayer coated carbide inserts. Measurement, Vol. 45, No.8, pp. 2153-2165. https://doi.org/10.1016/j.measurement.2012.05.015
Samanta, S., & Chakraborty, S. 2011. Parametric optimization of some non-traditional machining processes using artificial bee colony algorithm. Engineering Applications of Artificial Intelligence, Vol. 24, No. 6, pp. 946-957. https://doi.org/10.1016/j.engappai.2011.03.009
Senthil, K. A., & Joseph, D. S., 2020. Tool life prediction of ti [C, N] mixed alumina ceramic cutting tool using gradient descent algorithm on machining martensitic stainless steel. https://doi.org/10.20944/preprints202011.0248.v1
Sharma, V. S., Dogra, M., &Suri, N. 2009. Cooling techniques for improved productivity in turning. International Journal of Machine Tools and Manufacture, Vol. 49, No.6, pp. 435-453. https://doi.org/10.1016/j.ijmachtools.2008.12.010
Tuan, N. M., Duc, T. M., Long, T. T., Hoang, V. L., & Ngoc, T. B. 2022. Investigation of machining performance of MQL and MQCL hard turning using nano cutting fluids. Fluids, Vol.7, No. 5, 143. https://doi.org/10.3390/fluids7050143
Tzeng, Y., & Chen, F. 2007. Multi-objective optimisation of high-speed electrical discharge machining process using a Taguchi fuzzy-based approach. Materials & Design, Vol.28, No. 4, pp. 1159-1168. https://doi.org/10.1016/j.matdes.2006.01.028
Venkatesan, K., Devendiran, S., Sachin, D., & Swaraj, J. 2020. Investigation of machinability characteristics and comparative analysis under different machining conditions for sustainable manufacturing. Measurement, Vol.154, Article 107425. https://doi.org/10.1016/j.measurement.2019.107425
Yang, X., &Suash D. 2009. Cuckoo search via Levy flights. 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC). https://doi.org/10.1109/nabic.2009.5393690
DOI: http://dx.doi.org/10.22441/ijiem.v5i2.22728
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
IJIEM - Indonesian Journal of Industrial Engineering & Management
Program Pascasarjana Magister Teknik Industri Universitas Mercu Buana
Kampus Menteng - Gedung Tedja Buana, Floor 4th
Jl. Menteng Raya No. 29 Jakarta Pusat- Indonesia
Tlp.: +62 21 31935454 Fax: +62 21 31934474
http://publikasi.mercubuana.ac.id/index.php/ijiem
Email: [email protected]
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The journal is indexed by: