STRENGTH ANALYSIS OF A WUXI TUNNEL SHAFT USING FINITE ELEMENT METHOD

Azara Vigha Sisliana, Dedik Romahadi, Muhammad Imran

Abstract


The Wuxi Tunnel is a machine for producing mochi ice cream from China. One of the most important components in the ongoing production is the shaft. A shaft is a stationary rotating part, usually of a circular cross-section, to which elements such as gears, pulleys, cranks, sprockets, and other rotational transfer elements are attached. The load received by the shaft comes from the product and materials. The load was too heavy and worked continuously, resulting in the shaft breaking 3 times and not being straight. The purpose of this research is to analyze the shaft to determine the type of material and recommended dimensions so that the strength of the shaft is maintained and to determine the stress that occurs on the shaft due to the load from the product and other materials. The research method used in this study is the finite element method using Autodesk Inventor Pro software and manual calculations so that later, the results of the type of material and dimensions suitable for the shaft will be used. The analysis results show that the shaft can withstand loads at a diameter of 50 mm on the type of material AISI 4340 Annealed. The von Mises result for manual calculations is 294.2578 MPa, and the von Mises result for finite elements is 275.5 MPa. The allowable stress is 470 MPa. So that, AISI 4340 material with a recommended large diameter of at least 50 mm is a safe shaft limit that can be used at PT. X because the von Mises value is lower than other types of materials, and a safety factor of 1.71 is more than >1.


Keywords


Wuxi Tunnel; Shaft; Finite Element Method

Full Text:

PDF

References


Teja, P. K., Moorthy, G., & Kaliappan, S. (2018). Finite element analysis of propeller shaft for automotive and naval application. International Research Journal of Automotive Technology (IRJAT), 1(1), 08-12.

Awali, J., & Asroni, T., (2013). Analisa kegagalan poros dengan pendekatan metode elemen hingga. Turbo, 2(2), 39-44.

Sigarlaki, H. H., Tangkuman, S., & Arungpadang, T., (2015). Aplikasi metode elemen hingga pada perancangan poros belakang gokar listrik. Jurnal Online Poros Teknik Mesin, 4(2), 104-115.

Fitri, M., (2020). Pengaruh beban lentur pada poros stainless steel terhadap siklus kegagalan fatik. Jurnal Teknik Mesin, 9(3), 149-155.

Yulianto, T., & Ariesta, R. C., (2019). Analisis kekuatan shaft propeller kapal rescue 40 meter dengan metode elemen hingga. Kapal: Jurnal Ilmu Pengetahuan dan Teknologi Kelautan, 16(3), 100-105.

Saputra, G. J., & Romahadi, D., (2023). Analisis komparasi kekuatan geometri desain rusuk penguat pada kursi plastik menggunakan computer aided engineering. Jurnal Teknik Mesin, 12(1), 20-30.

Romahadi, D., Ruhyat, N., & Dorion, L. B. D. (2020). Condensor design analysis with kays and london surface dimensions. Sinergi, 24(2), 81.

Walidina, M. F., Kardiman, & Gusniar, I. N. (2022). Analisis tegangan von mises pada poros mesin penggiling sekam padi menggunakan software Ansys. Mettek, 8(1), 35-43.

Isworo, H., & Ansyah, P. R. (2018). Buku ajar metode elemen hingga HMKB654. Universitas Lambung Mangkurat. https://mesin.ulm.ac.id/assets/dist/bahan/MEH_Buku_Ajar_full.pdf

Afolabi, S. O., Oladapo, B. I., Ijagbemi, C. O., Adeoye, A. O. M., & Kayode, J. F. (2019). Design and finite element analysis of a fatigue life prediction for safe and economical machine shaft. Journal of Materials Research and Technology, 8(1), 105–111.

Wibawa, L. N., & Diharjo, K. (2019). Desain, pemilihan material, dan faktor keamanan stasiun pengisian gawai menggunakan metode elemen hingga. Jurnal Teknologi, 11(2), 97-102.

Ismail, R., Sugiyanto, Kristianto, H., Saputra, E., & Jamari. (2017). Pemodelan metode elemen hingga kontak femoral head dengan acetabular liner pada sendi panggul buatan dengan variasi diameter celah pada acetabular liner. Rotasi, 19(3), 139-146.

Mulyanto, T., & Sapto, A. D. (2017). Analisis tegangan von mises poros mesin pemotong umbi-umbian dengan software solidworks. Presisi, 18(2), 24-29.

Huzni, S. (2021). Analisis numerik kekuatan puntir baja karbon rendah menggunakan software (Solidworks). Jurnal REM (Rekayasa Energi Manufaktur), 6(2), 29-36.

Sufiyanto (2006). Kaji empirik kekuatan puntir baja ST 42 dengan variasi jumlah siklus fatigue. Transmisi, 2(2), 203-212.

Sahu, M. K. (2014). Optimization of the keyway design with consideration of effect of stress concentration on different materials. Int. J. Eng. Res, 3(5), 477-481.

Prajapati, H. R., Patel, B. P., & Patel, N. V. (2015). investigation of stress concentration factor for keyway on shaft under different loading conditions: A case study. University Journal of Research, 1(1), 45-57.

Suyadi (2016). Perhitungan kekuatan spi poros pada pengujian model kapal. Wave: Jurnal Ilmiah Teknologi Maritim, 10(1), 13-18.

Pedersen, N. L. (2010). Stress concentrations in keyways and optimization of keyway design. The Journal of Strain Analysis for Engineering Design, 45(8), 593-604.

Chandra, H., Putra, D. P., & Romli (2021). Investigasi tegangan pada poros bertingkat menggunakan metode elemen hingga berbasis computer aided engineering. Jurnal Austenit, 13(1), 1-5.

Khurmi, R. S., & Gupta, J. K. (2005). A textbook of machine design. S. Chand Publishing.




DOI: http://dx.doi.org/10.22441/ijimeam.v5i1.18974

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Azara Vigha Sisliana, Dedik Romahadi, Muhammad Imran

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

INDEXED IN

 

 

Publisher Address:
Universitas Mercu Buana
Program Studi S2 Teknik Mesin
Jl. Meruya Selatan No. 1, Jakarta 11650, Indonesia
Phone/Fax. (+6221) 5871335
Email [email protected]
Homepage http://teknikmesin.ft.mercubuana.ac.id/

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.