Business Intelligence Strategy for Company Business Development Using Online Analytical Processing
Abstract
The purpose of this article is to discuss Business Intelligence and its role in increasing a company's competitive advantage through the utilization of various data, information and knowledge owned by a company as a raw material in the decision-making process. The method used in this article uses Online Analytical Processing. The results of the research are (1) data analysis has become a major and vital requirement in efforts to increase the business competitiveness of an organization or company; (2) entrepreneur-style decision making that tends to rely on intuition becomes less suitable in the midst of an increasingly competitive and complicated business environment; (3) BI is an e-business application that functions to convert data within the company (operational, transactional, and other data) into a form of knowledge; (4) BI emphasizes the implementation of the 5 utilization of information for the purposes of data sourcing, data analysis, situation awareness, risk analysis, and decision support.
References
Aly M., Khomh F., and Yacout S. (2021), What Do Practitioners Discuss about IoT and Industry 4.0 Related Technologies? Characterization and Identification of IoT and Industry 4.0 Categories in Stack Overflow Discussions, Internet of Things, Vol. 14,100364, ISSN 2542–6605. DOI:10.1016/j.iot.2021.100364.
Ammar M., Haleem A., Javaid M., Bahl S., and VermanA.S. (2022), Implementing Industry 4.0 technologies in self-healing materials and digitally managing the quality of manufacturing, Materials Today: Proceedings, Vol. 52, Part 4, pp. 2285–2294, ISSN 2214–7853. DOI:10.1016/j.matpr.2021.09.248.
Bueechl J., Härting R.CH., and Schröder M. (2021), Influence of Digitization on Employee Satisfaction in Small and Medium-sized Enterprises, Procedia Computer Science, Vol. 192, pp. 2753–2760, ISSN 1877– 0509. DOI:10.1016/j.procs.2021.09.045.
Barberg, B. (2007). Building roads: getting to a shared understanding bussinessintelligence.com.
Choirul A.M. (2006). Business Intelligence dengan SQL Server 2005 membuat data menjadi bermakna. Diakses 22 Juli 2007 dari KWWSZZZilmukomputer.com.
Demir A.K., Döven G., and Sezen B. (2019), Industry 5.0 and Human-Robot Co-working, Procedia Computer Science, Vol. 158, pp. 688–695, ISSN 1877–0509. DOI:10.1016/j.procs.2019.09.104.
Dinardo G., Fabbiano L., and Vacca G. (2018), A smart and intuitive machine condition monitoring in the Industry 4.0 scenario, Measurement, Vol. 126, pp. 1– 12, ISSN0263–2241. DOI:10.1016/j.measurement. 2018.05.041.
eBizzAsia. (2004). Solution and strategies IT and communications: Business Intelligence bukan sembarang intel korporat. eBizzAsia, 1, 05 (Maret), 15.
Rifai, N., dan Gupta, K.A. (2004). Business Intelligence. Fakultas Teknologi Industri, Institut Teknologi Bandung.
Supply chain BI improves customer satisfaction. Diakses 9 Juli 2007 dari com
Zainudin, A., dan Sugianto, B. (2005). Aplikasi Business Intelligence untuk pemasaran. Diakses 5 Juli 2007 dari www.swa.co.id.
DOI: http://dx.doi.org/10.22441/indikator.v7i3.19171
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Indikator: Jurnal Ilmiah Manajemen dan Bisnis
INDIKATOR
Magister Manajemen Universitas Mercu Buana
Jl. Raya Kranggan No. 6 Jatisampurna, Kampus D Universitas Mercu Buana 17436
Tlp./Fax: +62218449635
p-ISSN: 2598-6783
e-ISSN: 2598-4888
http://publikasi.mercubuana.ac.id/index.php/indikator
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.