DISCRETE EVENT SIMULATION MODELING WITH ARENA FOR COMBINATION OF MANUAL QUEUE AND FAST TRACK QUEUE IN HOSPITAL

Febrian Krisnawati, Dhoni Muhamad Room Anugroho, Laura Yunita Rachmawati, Muhammad Asrol

Abstract


In this study an analysis of the patient queuing system will be carried out by developing a queuing system, namely adding aspects of patient registration status and the registration process with a system or machine or through the hospital's web by downloading an application. This study aims to improve the efficiency of patient service management in clinics and develop a patient care management simulation model so that the number of patient rejections and patient waiting time in clinics. Discrete Event Simulation (DES) with ARENA and compare it with manual processes and with applications or machines in the registration process. The results show that patient rejection can be reduced to 1%, and the average patient time to be seen by a doctor is 0.7145 hours. If converted into minutes, each type of patient takes about 10 minutes in the doctor's office.


Keywords


Simulation; Queuing system; Hospital management; Discrete Event Simulation

Full Text:

PDF

References


A Santosa, M Sagathi, M. R. S. (2019). Simulation of First Level Health Care Facilities to Reduce Patient Flow Time Simulation of First Level Health Care Facilities to Reduce Patient Flow Time. IOP Conf. Series: Materials Science and Engineering 662 (2019) 042004 IOP Publishing. https://doi.org/10.1088/1757-899X/662/4/042004

Almagooshi, S. (2015). Simulation Modelling in Healthcare: Challenges and Trends. Procedia Manufacturing, 3(Ahfe), 301–307. https://doi.org/10.1016/j.promfg.2015.07.155

Arini, H. M., Lathifah, N., Maharani, L. D., & Masruroh, N. A. (2021). Proceedings of the Operational Research Society Simulation Workshop 2021 (SW21) M. Fakhimi, D. Robertson, and T. Boness, eds. 2021(1995), 200–209.

Branch, N. (2015). Analysing the performance of emergency department by simulation : the case of Sirjan Hospital Zahra Sepehri S . Mohammad Arabzad * Seyed Mojtaba Sajadi. 20(3), 289–301.

Centeno, M., & Carrillo, M. (2001). Challenges of introducing simulation as a decision making tool (Vol. 1). https://doi.org/10.1109/WSC.2001.977241

Evans, G. W., Gor, T. B., & Unger, E. (1996). patients . It includes assessingpatient conditions , taking vital signs , applying dressin ~ hanging IV ’ s , patient treatment etc . Whereas indirect time apent by the staff of the ER includes coordinating patient care with other departments , prcessing . Simulation, 1205–1209.

Gunal, M. M. (2012). A guide for building hospital simulation models. Health Systems, 1(1), 17–25. https://doi.org/10.1057/hs.2012.8

Guseva, E., Varfolomeyeva, T., Efimova, I., & Movchan, I. (2018). Discrete event simulation modelling of patient service management with Arena. Journal of Physics: Conference Series, 1015(3). https://doi.org/10.1088/1742-6596/1015/3/032095

Hillier, F. S., & Lieberman, G. J. (2013). Introdução à pesquisa operacional. MCGRAW HILL BRASIL.

Karima, H. Q., & Sopha, B. M. (2020). Pengembangan Model dan Simulasi Berbasis Agen untuk Adopsi Layanan Bank Sampah di Kota Semarang. 5(3), 111–120.

Kresnawati, D. (2011). Aplikasi Pendaftaran Pasien Rawat Jalan Berbasis Web dan Wap. 1–201.

Malik, A. A. (2019). Implementasi kebijakan diskresi pada pelayanan kesehatan badan penyelenggara jaminan kesehatan (bpjs). Jurnal Ilmiah Kesehatan Sandi Husada. https://akper-sandikarsa.e-journal.id/JIKSH/article/view/62

Mohamad, F., & Filza Saharin, S. (2019). Application of Discrete Event Simulation (DES) for Queuing System Improvement at Hypermarket. KnE Social Sciences, 2019, 330–346. https://doi.org/10.18502/kss.v3i22.5059

Parkinson, B., Meacock, R., Checkland, K., & Sutton, M. (2020). Clarifying the concept of avoidable emergency department attendance. Journal of Health Services Research & Policy, 26(1), 68–73. https://doi.org/10.1177/1355819620921894

Robinson, S. (2005). Discrete-event simulation: from the pioneers to the present, what next? Journal of the Operational Research Society, 56(6), 619–629. https://doi.org/10.1057/palgrave.jors.2601864

S. Kim, B. Feng, K. Smith, S. Masoud, Z. Zheng, C. Szabo and M. Loper, E. (2021). USING DISCRETE EVENT SIMULATION TO IMPROVE PERFORMANCE AT TWO CANADIAN EMERGENCY DEPARTMENTS. Proceedings of the 2021 Winter Simulation Conference, 6.

Seay, J. R., & You, F. (2016). Discrete Event Simulation - an overview ScienceDirect Topics.

Siagian, P. (1987). Universitas Indonesia Library >> Buku Teks. Jakarta: UI-Press, 1987.

Varga, A. (2001). The OMNET++ discrete event simulation system. Proc. ESM’2001, 9.

Vinogradova-zinkeviˇ, I. (2021). On Little ’ s Formula in Multiphase Queues. 1–14.




DOI: http://dx.doi.org/10.22441/pasti.2022.v16i3.001

Refbacks

  • There are currently no refbacks.


Jurnal PASTI (Penelitian dan Aplikasi Sistem dan Teknik Industri)
Teknik Industri, Fakultas Teknik, Universitas Mercu Buana
Jl. Meruya Selatan, Kembangan, Jakarta Barat 11650
Tlp./Fax: +62215871335
p-ISSN: 2085-5869 / e-ISSN: 2598-4853
http://journal.mercubuana.ac.id/index.php/pasti/

 

This journal is accredited:

This journal is indexed by:

     

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Web
Analytics Made Easy - StatCounter
View My Stats