Cepi Yazirin, A. Muhammad, J. W. Dika, D. I. Tsamroh, Mudawamah Mudawamah


Graphene Oxide is a material that has a thickness of one atom composed of carbon atoms to form a hexagonal lattice and a material that has unique properties, namely mechanical, optical, thermal, and electrical properties. Fe2O3 is a material that has magnetic properties and can be used for various applications such as enzyme separation, drug transport, microwave absorption, photocatalysts, biological applications, biomedicine, metal separation, and magnetic resonance imaging (MRI). In this study, the addition of graphene oxide was carried out using the coprecipitation method on Fe2O3 nanomaterials that had been treated with sintering and non-sintering. The coprecipitation method is the synthesis of inorganic compounds which is based on the deposition of more than one substance together when it passes the saturation point. The purpose of this study was to determine whether the addition of graphene oxide to the Fe2O3 material can increase the magnetic properties of the Fe2O3 material or vice versa. The result was that the sintering treatment on Fe2O3 GO did not have a transforming effect on its magnetic properties, but instead had a changing effect on its magnetic value. However, the magnetic coercivity value of Fe2O3 + GO 700 ºC increased to 0.038 Tesla. Thus, it can be concluded that at a temperature of 700 °C graphene oxide acts as a barrier from external magnetic fields in the opposite direction.


Graphene Oxide; Fe2O3; Magnetic Properties; Sintering and Non-sintering

Full Text:



A. Geim, A. Fert, W. De Heer, and R. Ruoff, “editorial It ’ s still all about graphene,” vol. 10, no. December 2010, pp. 2010–2011, 2011, doi: 10.1002/smll.201001555.

A. S. Mayorov et al., “How Close Can One Approach the Dirac Point in Graphene,” 2012.

V. K. Singh, M. K. Patra, M. Manoth, G. S. Gowd, S. R. Vadera, and N. Kumar, “In situ synthesis of graphene oxide and its composites with iron oxide,” New Carbon Mater., vol. 24, no. 2, pp. 147–152, 2009, doi: 10.1016/S1872-5805(08)60044-X.

F. Wang, X. F. Qin, Y. F. Meng, Z. L. Guo, L. X. Yang, and Y. F. Ming, “Hydrothermal synthesis and characterization of α-Fe2O 3 nanoparticles,” Mater. Sci. Semicond. Process., vol. 16, no. 3, pp. 802–806, 2013, doi: 10.1016/j.mssp.2012.12.029.

A. P. Hadi, “Kajian Transformasi Antar Fasa Pada Komposit Fe3O4/Fe2O3.” p. 69, 2009.

R. D. Tawainella, Y. Riana, R. Fatayati, T. Kato, and S. Iwata, “Sintesis Nanopartikel Manganese Ferrite ( MnFe 2 O 4 ) dengan Metode Kopresipitasi dan Karakterisasi Sifat Kemagnetannya,” vol. XVIII, no. April, pp. 1–7, 2014.

A. Muhammad, P. Puspitasari, and Andoko, “Properties of soft magnetic material SmCo5 synthesized using low-temperature sol-gel method,” AIP Conf. Proc., vol. 2120, no. July, pp. 3–8, 2019, doi: 10.1063/1.5115684.

D. Kustono, P. Puspitasari, and A. Muhammad, “Time Dependence on Magnetic Properties of Nanomaterial,” pp. 361–370, 2019.

P. Puspitasari, A. Muhammad, H. Suryanto, and A. Andoko, “Determination of The Magnetic Properties of Manganese Ferrite by The Coprecipitation Method at Different Ph Concentrations,” High Temp. Mater. Process. An Int. Q. High-Technology Plasma Process., vol. 22, pp. 239–248, 2018.

S. A. Rahmayeni, Zulhadjri, Novesar Jamarun, Emriadi, “Synthesis of ZnO-NiFe 2 O 4 Magnetic Nanocomposites by Simple Solvothermal Method for Photocatalytic Dye Degradation under Solar Light,” Orient. J. Chem, vol. 32, no. 3, pp. 1411–1419, 2016, doi: 10.13005/ojc/320315.

S. Kralj and D. Makovec, “Magnetic Assembly of Superparamagnetic Iron Oxide Nanoparticle Clusters into Nanochains and Nanobundles,” ACS Nano, vol. 9, no. 10, pp. 9700–9707, 2015, doi: 10.1021/acsnano.5b02328.

K. Zipare, J. Dhumal, S. Bandgar, V. Mathe, and G. Shahane, “Superparamagnetic Manganese Ferrite Nanoparticles: Synthesis and Magnetic Properties,” J. Nanosci. Nanoeng., vol. 1, no. 3, pp. 178–182, 2015.

P. Puspitasari, A. A. Permanasari, M. S. Shaharun, and A. Muhammad, “High saturation superparamagnetic properties of low-temperature sintering of nickel oxide,” AIP Conf. Proc., vol. 2228, no. April, 2020, doi: 10.1063/5.0000884.

P. Puspitasari, A. Muhammad, A. A. Permanasari, T. Pasang, S. M. S. N. S. Zahari, and N. A. Ahmad, “In Search of Magnetic Properties of Samarium Cobalt (Sm2Co17) within a Low-Temperature Sintering Process,” Bull. Chem. React. Eng. & Catal. 2021 BCREC Vol. 16 Issue 3 Year 2021 (September 2021)DO - 10.9767/bcrec.16.3.10482.517-524 , Sep. 2021.

C. Iván et al., “Effect of Thickness on Magnetic Dipolar and Exchange Interactions in SmCo / FeCo / SmCo Thin Films,” Adv. Mater. Phys. Chem., vol. 5, no. 9, 2015, doi: 10.4236/ampc.2015.59037.

M. Fukuchi, “General Theory of Superexchange Interaction,” Prog. Theor. Phys., vol. 25, no. 6, pp. 939–955, 1961, doi: 10.1143/ptp.25.939.

T. D. Nguyen, C. C. Nguyen, T. T. Nguyen, and K. H. Pham, “Factors on the magnetic properties of the iron nanoparticles by classical Heisenberg model,” Phys. B Condens. Matter, vol. 532, pp. 144–148, 2018, doi: 10.1016/j.physb.2017.08.083.

V. A. Gavrichkov, S. I. Polukeev, and S. G. Ovchinnikov, “Superexchange Interaction in Magnetic Insulators with Spin Crossover,” J. Exp. Theor. Phys., vol. 127, no. 4, pp. 713–720, 2018, doi: 10.1134/S1063776118100023.

O. Domanov et al., “Exchange coupling in a frustrated trimetric molecular magnet reversed by a 1D nano-confinement,” Nanoscale, vol. 11, no. 22, pp. 10615–10621, 2019, doi: 10.1039/C9NR00796B.

E. Bîrsan, “The superexchange interaction influence on the magnetic ordering in manganites,” J. Magn. Magn. Mater., vol. 320, no. 5, pp. 646–650, 2008, doi:

H. Onodera, Y. Yamaguchi, H. Yamamoto, M. Sagawa, Y. Matsuura, and H. Yamamoto, Magnetic properties of a new permanent magnet based on a Nd-Fe-B compound (neomax). I. Mössbauer study, vol. 46, no. 1–2. 1984.

S. P. K. Naik and P. M. S. Raju, “Microstructural and magnetic properties of YBCO nanorods: Synthesized by template growth method,” AIMS Mater. Sci., vol. 3, no. 3, pp. 916–926, 2016, doi: 10.3934/matersci.2016.3.916.

S. Biswal, D. S. Bhaskaram, and G. Govindaraj, “Graphene oxide: structure and temperature dependent magnetic characterization,” Mater. Res. Express, vol. 5, no. 8, p. 86104, 2018, doi: 10.1088/2053-1591/aad1cf.

A. Roszko and E. Fornalik-Wajs, “Magnetic nanofluid properties as the heat transfer enhancement agent,” E3S Web Conf., vol. 10, p. 00111, 2016, doi: 10.1051/e3sconf/20161000111.

X. Zheng et al., “Synthesis and magnetic properties of samarium hydroxide nanocrystals,” New J. Chem., vol. 39, no. 6, pp. 4972–4976, 2015, doi: 10.1039/c4nj01682c.

M. Alagiri, S. Ponnusamy, and C. Muthamizhchelvan, “Synthesis and characterization of NiO nanoparticles by sol-gel method,” J. Mater. Sci. Mater. Electron., vol. 23, no. 3, pp. 728–732, 2012, doi: 10.1007/s10854-011-0479-6.

V. Sharma, J. Saha, S. Patnaik, and B. K. Kuanr, “Synthesis and characterization of yttrium iron garnet (YIG) nanoparticles - Microwave material,” AIP Adv., vol. 7, no. 5, 2017, doi: 10.1063/1.4973199.

M. Ziese, L. Jin, and I. Lindfors-Vrejoiu, “ Unconventional anomalous Hall effect driven by oxygen-octahedra-tailoring of the SrRuO 3 structure ,” J. Phys. Mater., vol. 2, no. 3, p. 034008, 2019, doi: 10.1088/2515-7639/ab1aef.

C. R. Johnson, G. M. Tsoi, and Y. K. Vohra, “Magnetic transition temperatures follow crystallographic symmetry in samarium under high-pressures and low-temperatures,” J. Phys. Condens. Matter, vol. 29, no. 6, p. 65801, 2016, doi: 10.1088/1361-648x/29/6/065801.

J. B. Lee et al., “Synthesis and magnetic properties of hematite particles in a ‘nanomedusa’ morphology,” J. Nanomater., vol. 2014, pp. 1–10, 2014, doi: 10.1155/2014/902968.

G. Bahuguna et al., “Electrophilic fluorination of α-Fe2O3 nanostructures and influence on magnetic properties,” Mater. Des., vol. 135, no. September, pp. 84–91, 2017, doi: 10.1016/j.matdes.2017.09.012.

D. Bilican et al., “Ferromagnetic-like behaviour in bismuth ferrite films prepared by electrodeposition and subsequent heat treatment,” RSC Adv., vol. 7, no. 51, pp. 32133–32138, 2017, doi: 10.1039/c7ra04375a.

T. Tang et al., “Identifying the magnetic properties of graphene oxide,” Appl. Phys. Lett., vol. 104, p. 123104, Mar. 2014, doi: 10.1063/1.4869827.

N. Somaiah, T. V. Jayaraman, P. A. Joy, and D. Das, “Magnetic and magnetoelastic properties of Zn-doped cobalt-ferrites - CoFe 2-xZn xO 4 (x=0, 0.1, 0.2, and 0.3),” J. Magn. Magn. Mater., vol. 324, no. 14, pp. 2286–2291, 2012, doi: 10.1016/j.jmmm.2012.02.116.

S. R. Nalage, M. A. Chougule, S. Sen, P. B. Joshi, and V. B. Patil, “Sol-gel synthesis of nickel oxide thin films and their characterization,” Thin Solid Films, vol. 520, no. 15, pp. 4835–4840, 2012, doi: 10.1016/j.tsf.2012.02.072.

S. Thakur, S. C. Katyal, and M. Singh, “Improvement in electric and dielectric properties of nanoferrite synthesized via reverse micelle technique,” Appl. Phys. Lett., vol. 91, no. 26, pp. 88–91, 2007, doi: 10.1063/1.2824454.

D. Nguyen-Trong, “Z-AXIS deformation method to investigate the influence of system size, structure phase transition on mechanical properties of bulk nickel,” Mater. Chem. Phys., vol. 252, no. May, p. 123275, 2020, doi: 10.1016/j.matchemphys.2020.123275.

R. C. Pullar, “Hexagonal ferrites: A review of the synthesis, properties and applications of hexaferrite ceramics,” Prog. Mater. Sci., vol. 57, no. 7, pp. 1191–1334, 2012, doi: 10.1016/j.pmatsci.2012.04.001.

N. Yahya, P. Puspitasari, K. Koziol, and G. Pavia, “New Approach to ammonia synthesis by catalysis in magnetic field,” J. Nano Res., vol. 16, pp. 119–130, 2012, doi: 10.4028/

C. Yazirin, P. Puspitasari, M. Sasongko, D. Tsamroh, and P. Risdanareni, Phase identification and morphology study of hematite (Fe2O3) with sintering time varitions, vol. 1887. 2017.

R. R. Shahraki, M. Ebrahimi, S. A. S. Ebrahimi, and S. M. Masoudpanah, “Journal of Magnetism and Magnetic Materials Structural characterization and magnetic properties of superparamagnetic zinc ferrite nanoparticles synthesized by the coprecipitation method,” J. Magn. Magn. Mater., vol. 324, no. 22, pp. 3762–3765, 2012, doi: 10.1016/j.jmmm.2012.06.020.

X. He et al., “Effects of Ar/H2 annealing on the microstructure and magnetic properties of CoO nanoparticles,” RSC Adv., vol. 5, no. 86, pp. 69948–69954, 2015, doi: 10.1039/c5ra09723a.

C. Mahender, S. T P, R. Ade, A. Saranya, S. Prasad, and N. Venkataramani, “Low-loss YIG thick films for microwave applications,” Ceram. Int., vol. 45, no. 4, pp. 4316–4321, 2019, doi: 10.1016/j.ceramint.2018.11.106.

T. Tang et al., “Identifying the magnetic properties of graphene oxide,” Appl. Phys. Lett., vol. 104, no. 12, p. 123104, Mar. 2014, doi: 10.1063/1.4869827.

A. Nayak, S. K. Sarkar, K. K. Raul, S. S. Pradhan, S. Basu, and A. Nayak, “Magnetic properties of graphite oxide and reduced graphene oxide SK Sarkar, KK Raul, SS Pradhan, S Basu, A Nayak Physica E: Low-dimensional Systems and Nanostructures 64, 78-82,” Phys. E Low-dimensional Syst. Nanostructures, vol. 64, p. 2014, Nov. 2014, doi: 10.1016/j.physe.2014.07.014.

M. D. Nurhafizah, “Magnetic properties of graphene oxide via a simple mixing with waste engine oil-based carbon nanotubes,” SN Appl. Sci., vol. 2, no. 4, p. 534, 2020, doi: 10.1007/s42452-020-2361-8.

A. Gatelyte, D. Jasaitis, A. Beganskiene, and A. Kareiva, “Sol-gel synthesis and characterization of selected transition metal nano-ferrites,” Medziagotyra, vol. 17, no. 3, pp. 302–307, 2011, doi: 10.5755/

J. H. Lee et al., “Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging,” Nat. Med., vol. 13, no. 1, pp. 95–99, 2007, doi: 10.1038/nm1467.

S. Kralj, D. Makovec, S. Čampelj, and M. Drofenik, “Producing ultra-thin silica coatings on iron-oxide nanoparticles to improve their surface reactivity,” J. Magn. Magn. Mater., vol. 322, no. 13, pp. 1847–1853, 2010, doi: 10.1016/j.jmmm.2009.12.038.

J. Wu et al., “Natural van der Waals heterostructural single crystals with both magnetic and topological properties,” Sci. Adv., vol. 5, no. 11, pp. 1–10, 2019, doi: 10.1126/sciadv.aax9989.

K. Bagani et al., “Anomalous behaviour of magnetic coercivity in graphene oxide and reduced graphene oxide,” J. Appl. Phys., vol. 115, no. 2, p. 23902, Jan. 2014, doi: 10.1063/1.4861173.



  • There are currently no refbacks.

Copyright (c) 2022 Cepi Yazirin, A. Muhammad, J. W. Dika, D. I. Tsamroh, Mudawamah Mudawamah

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.




Publisher Address:
Universitas Mercu Buana
Program Studi S2 Teknik Mesin
Jl. Meruya Selatan No. 1, Jakarta 11650, Indonesia
Phone/Fax. (+6221) 5871335

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.